Publications by authors named "James Lewicki"

Siloxane systems consisting primarily of polydimethylsiloxane (PDMS) are versatile, multifaceted materials that play a key role in diverse applications. However, open questions exist regarding the correlation between their varied atomic-level properties and observed macroscale features. To this effect, we have created a systematic workflow to determine coarse-grained simulation models for crosslinked PDMS in order to further elucidate the effects of network changes on the system's rheological properties below the gel point.

View Article and Find Full Text PDF

A primary mode for radiation damage in polymers arises from ballistic electrons that induce electronic excitations, yet subsequent chemical mechanisms are poorly understood. We develop a multiscale strategy to predict this chemistry starting from subatomic scattering calculations. Nonadiabatic molecular dynamics simulations sample initial bond-breaking events following the most likely excitations, which feed into semiempirical simulations that approach chemical equilibrium.

View Article and Find Full Text PDF

Chemical reaction schemes are key conceptual tools for interpreting the results of experiments and simulations, but often carry implicit assumptions that remain largely unverified for complicated systems. Established schemes for chemical damage through crosslinking in irradiated silicone polymers comprised of polydimethylsiloxane (PDMS) date to the 1950's and correlate small-molecule off-gassing with specific crosslink features. In this regard, we use a somewhat reductionist model to develop a general conditional probability and correlation analysis approach that tests these types of causal connections between proposed experimental observables to reexamine this chemistry through quantum-based molecular dynamics (QMD) simulations.

View Article and Find Full Text PDF

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput.

View Article and Find Full Text PDF

Initial atomistic-level radiation damage in chemically reactive materials is thought to induce reaction cascades that can result in undesirable degradation of macroscale properties. Ensembles of quantum-based molecular dynamics (QMD) simulations can accurately predict these cascades, but extracting chemical insights from the many underlying trajectories is a labor-intensive process that can require substantial intuition. We develop here a general and automated graph-based approach to extract all chemically distinct structures sampled in QMD simulations and apply our approach to predict primary radiation damage of polydimethylsiloxane (PDMS), the main constituent of silicones.

View Article and Find Full Text PDF

Chemical reactions involving the polydimethylsiloxane (PDMS) backbone can induce significant network rearrangements and ultimately degrade macro-scale mechanical properties of silicone components. Using two levels of quantum chemical theory, we identify a possible electronic driver for chemical susceptibility in strained PDMS chains and explore the complicated interplay between hydrolytic chain scissioning reactions, mechanical deformations of the backbone, water attack vector, and chain mobility. Density functional theory (DFT) calculations reveal that susceptibility to hydrolysis varies significantly with the vector for water attacks on silicon backbone atoms, which matches strain-induced anisotropic changes in the backbone electronic structure.

View Article and Find Full Text PDF

We use ensembles of quantum-based molecular dynamics simulations to predict the chemical reactions that follow radiation-induced excitations of phenyl groups in a model copolymer of polydimethylsiloxane and polydiphenylsiloxane. Our simulations span a wide range of highly porous and condensed phase densities and include both wet and dry conditions. We observe that in the absence of water, excited phenyl groups tend to abstract hydrogen from other methyl or phenyl side groups to produce benzene, with the under-hydrogenated group initiating subsequent intrachain cyclization reactions.

View Article and Find Full Text PDF

Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. A series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures.

View Article and Find Full Text PDF

Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites.

View Article and Find Full Text PDF

Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses.

View Article and Find Full Text PDF

Elastomeric polysiloxane nanocomposites with elongations of >5000% (more than 3× greater than any previously reported material) with excellent shape recovery are presented. Highly deformable materials are desirable for the fabrication of stretchable implants and microfluidic devices. No crosslinking or domain formation is observed by a variety of analytical techniques, suggesting that their elastomeric behavior is caused by polymer chain entanglements.

View Article and Find Full Text PDF

Correction for 'Nanoscale structure and superhydrophobicity of sp(2)-bonded boron nitride aerogels' by Thang Pham et al., Nanoscale, 2015, 7, 10449-10458.

View Article and Find Full Text PDF

Aerogels have much potential in both research and industrial applications due to their high surface area, low density, and fine pore size distribution. Here we report a thorough structural study of three-dimensional aerogels composed of highly crystalline sp(2)-bonded boron nitride (BN) layers synthesized by a carbothermic reduction process. The structure, crystallinity and bonding of the as-prepared BN aerogels are elucidated by X-ray diffraction, (11)B nuclear magnetic resonance, transmission electron microscopy, and resonant soft X-ray scattering.

View Article and Find Full Text PDF

Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas.

View Article and Find Full Text PDF

Water-vapor-uptake experiments were performed on a silica-filled poly(dimethylsiloxane) (PDMS) network and modeled by using two different approaches. The data was modeled by using established methods and the model parameters were used to predict moisture uptake in a sample. The predictions are reasonably good, but not outstanding; many of the shortcomings of the modeling are discussed.

View Article and Find Full Text PDF

Novel electron beam crosslinked polyurethane shape memory polymers with advanced processing capabilities and tunable thermomechanical properties have been synthesized and characterized. We demonstrate the ability to manipulate crosslink density in order to finely tune rubbery modulus, strain capacity, ultimate tensile strength, recovery stress, and glass transition temperature. This objective is accomplished for the first time in a low-molecular-weight polymer system through the precise engineering of thermoplastic resin precursors suitable for mass thermoplastic processing.

View Article and Find Full Text PDF

We report the synthesis of a three-dimensional (3D) macroassembly of graphene sheets with electrical conductivity (∼10(2) S m(-1)) and Young's modulus (∼50 MPa) orders of magnitude higher than those previously reported, super-compressive deformation behavior (∼60% failure strain), and surface areas (>1300 m(2) g(-1)) approaching theoretically maximum values.

View Article and Find Full Text PDF

Reported here is the synthesis and subsequent characterization of the physical and chemical properties of novel polysiloxane elastomers modified with a series of polyhedraloligomericsilsequioxane (POSS) molecular silicas. The physical properties of the formulated nanocomposite systems have been characterized with a combination of dynamic mechanical analysis (DMA), broadband dielectric spectroscopy (BDS) and confocal Raman microscopy. The results of the physical property characterization demonstrate that the incorporation of low levels (1-4% by wt.

View Article and Find Full Text PDF