Publications by authors named "James Lazorchak"

Wastewaters and leachates from various inland resource extraction activities contain high ionic concentrations and differ in ionic composition, which complicates the understanding and effective management of their relative risks to stream ecosystems. To this end, we conducted a stream mesocosm dose-response experiment using two dosing recipes prepared from industrial salts. One recipe was designed to generally reflect the major ion composition of deep well brines (DWB) produced from gas wells (primarily Na, Ca, and Cl) and the other, the major ion composition of mountaintop mining (MTM) leachates from coal extraction operations (using salts dissociating to Ca, Mg, Na, SO and HCO)-both sources being extensive in the Central Appalachians of the USA.

View Article and Find Full Text PDF

Background: Restoration efforts have led to the return of anadromous fish, potential source of food for the Penobscot Indian Nation, to the previously dammed Penobscot River, Maine.

Objective: U.S.

View Article and Find Full Text PDF

Tetragnathid spiders have been used as sentinels to study the biotransport of contaminants between aquatic and terrestrial environments because a significant proportion of their diet consists of adult aquatic insects. A key knowledge gap in assessing tetragnathid spiders as sentinels is understanding the consistency of the year-to-year relationship between contaminant concentrations in spiders and sediment, water, and macroinvertebrates. We collected five years of data over a seven-year investigation at a PCB contaminated-sediment site to investigate if concentrations in spiders were consistently correlated with concentrations in sediment, water, and aquatic macroinvertebrates.

View Article and Find Full Text PDF

What do environmental contaminants and climate change have in common with the virus SARS-CoV-2 and the disease COVID-19? We argue that one common element is the wealth of basic and applied scientific research that provides the knowledge and tools essential in developing effective programs for addressing threats to humans and social-ecological systems. Research on various chemicals, including dichlorodiphenyltrichloroethane and per- and polyfluoroalkyl substances, resulted in regulatory action to protect environmental and human health. Moreover, decades of research on coronaviruses, mRNA, and recently SARS-CoV-2 enabled the rapid development of vaccines to fight the COVID-19 pandemic.

View Article and Find Full Text PDF

A data-driven approach to characterizing the risk of cyanobacteria-based harmful algal blooms (cyanoHABs) was undertaken for the Ohio River. Twenty-five years of river discharge data were used to develop Bayesian regression models that are currently applicable to 20 sites spread-out along the entire 1579 km of the river's length. Two site-level prediction models were developed based on the antecedent flow conditions of the two blooms that occurred on the river in 2015 and 2019: one predicts if the current year will have a bloom (the occurrence model), and another predicts bloom persistence (the persistence model).

View Article and Find Full Text PDF

Harmful algal blooms (HABs) and their toxins are a significant and continuing threat to aquatic life in freshwater, estuarine, and coastal water ecosystems. Scientific understanding of the impacts of HABs on aquatic ecosystems has been hampered, in part, by limitations in the methodologies to measure cyanotoxins in complex matrices. This literature review discusses the methodologies currently used to measure the most commonly found freshwater cyanotoxins and prymnesins in various matrices and to assess their advantages and limitations.

View Article and Find Full Text PDF

1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options.

View Article and Find Full Text PDF

Levels of total mercury were measured in tissue of six species of migratory fish (alewife, American shad, blueback herring, rainbow smelt, striped bass, and sea lamprey), and in roe of American shad for two consecutive years collected from the Penobscot River or its estuary. The resultant mercury levels were compared to reference doses as established in the U.S.

View Article and Find Full Text PDF

For decades, we have known that chemicals affect human and wildlife behavior. Moreover, due to recent technological and computational advances, scientists are now increasingly aware that a wide variety of contaminants and other environmental stressors adversely affect organismal behavior and subsequent ecological outcomes in terrestrial and aquatic ecosystems. There is also a groundswell of concern that regulatory ecotoxicology does not adequately consider behavior, primarily due to a lack of standardized toxicity methods.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how the sulfate (SO₄²⁻) anion impacts freshwater species under elevated salinity conditions by measuring sulfate uptake and release in four species: fathead minnow, paper pondshell, red swamp crayfish, and two-lined mayfly.
  • The research employed stable isotope ratios alongside measurements of sulfate concentrations to determine influx rates, net flux, and efflux rates over a 24-hour period.
  • Results indicated that all species had positive sulfate influx rates, with some showing variable net flux and efflux rates, suggesting that freshwater animals may regulate sulfate levels more than previously understood.
View Article and Find Full Text PDF

Rivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are increasingly being used to complement routine chemical monitoring. This study was initiated to assess the ability of both targeted and untargeted biologically-based monitoring tools to discriminate impacts of two adjacent wastewater treatment plants (WWTPs) on Colorado's South Platte River.

View Article and Find Full Text PDF

The egg yolk precursor protein vitellogenin is widely used as a biomarker of estrogen exposure in male fish. However, standardized methodology is lacking and little is known regarding the reproducibility of results among laboratories using different equipment, reagents, protocols, and data analysis programs. To address this data gap we tested the reproducibility across laboratories to evaluate vitellogenin gene (vtg) expression and assessed the value of using a freely available software data analysis program.

View Article and Find Full Text PDF

U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites (representing 82 954 river km) in 2008-2009, and analyzed samples for 50 persistent organic pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organochlorine pesticides.

View Article and Find Full Text PDF

Influence of waterborne butachlor (BUC), a commonly used pesticide, on morphometric, biochemical, and molecular biomarkers was evaluated in juvenile, full sibling, diploid and triploid African catfish (Clarias gariepinus). Fish were exposed for 21 days to one of three concentrations of BUC [mean measured µg/L: 22, 44 or 60]. Unexposed (control) triploids were heavier and longer and had higher visceral-somatic index (VSI) than diploids.

View Article and Find Full Text PDF

The impacts of environmental stressors on polyploid organisms are largely unknown. This study investigated changes in morphometric, molecular, and biochemical parameters in full-sibling diploid and triploid African catfish (Clarias gariepinus) in response to chlorpyrifos (CPF) exposures. Juvenile fish were exposed to three concentrations of CPF (mean measured μg/L (SD): 9.

View Article and Find Full Text PDF

In this Focus article, the authors ask a seemingly simple question: Are harmful algal blooms (HABs) becoming the greatest inland water quality threat to public health and aquatic ecosystems? When HAB events require restrictions on fisheries, recreation, and drinking water uses of inland water bodies significant economic consequences result. Unfortunately, the magnitude, frequency, and duration of HABs in inland waters are poorly understood across spatiotemporal scales and differentially engaged among states, tribes, and territories. Harmful algal bloom impacts are not as predictable as those from conventional chemical contaminants, for which water quality assessment and management programs were primarily developed, because interactions among multiple natural and anthropogenic factors determine the likelihood and severity to which a HAB will occur in a specific water body.

View Article and Find Full Text PDF

To assess the potential exposure of aquatic ecosystems to active pharmaceutical ingredients, the authors conducted a national-scale, probability-based statistical survey of the occurrence of these compounds in surface waters of the United States. The survey included 182 sampling sites and targeted rivers with close proximity to urban areas. The 46 analytes reported represent many classes of active pharmaceutical ingredients (APIs), including antibiotics, diuretics, antihypertensives, anticonvulsants, and antidepressants.

View Article and Find Full Text PDF

Antibiotics play a pivotal role in the management of infectious disease in humans, companion animals, livestock, and aquaculture operations at a global scale. Antibiotics are produced, consumed, and released into the environment at an unprecedented scale causing concern that the presence of antibiotic residues may adversely impact aquatic and terrestrial ecosystems. Here we critically review the ecotoxicological assessment of antibiotics as related to environmental risk assessment (ERA).

View Article and Find Full Text PDF

17α-ethinylestradiol (EE2) is a synthetic estrogen that is an active ingredient in oral contraception and hormone replacement therapy. Surveys of wastewater treatment plant effluents and surface waters throughout the world have reported EE2 concentrations in the ng/L range, and these low levels can cause significant reproductive effects in fish. This study tested the effects of three environmentally relevant EE2 concentrations: 0.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) such as 17α-ethynylestradiol, 17β-estradiol, estrone, and para-nonylphenol have been measured in wastewater-treatment plant effluents, surface waters, sediments, and sludge and have been shown to induce liver-specific vitellogenin (vtg) messenger RNA in male fathead minnows (Pimephales promelas). The purpose of the present study was to establish minimal concentrations of select EDCs necessary to induce transcription of vtg in 48-h static renewal exposures, as measured by quantitative real-time thermal cycle amplification. Adult males were exposed to 17α-ethynylestradiol, 17β-estradiol, estrone, and para-nonylphenol.

View Article and Find Full Text PDF

The US Environmental Protection Agency (USEPA) develops methods and tools for evaluating risk management strategies for sediments contaminated with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and other legacy pollutants. Monitored natural recovery is a risk management alternative that relies on existing physical, chemical, and biological processes to contain, destroy, and/or reduce the bioavailability or toxicity of in-place contaminants. These naturally occurring processes are monitored to ensure that management and recovery are progressing as expected.

View Article and Find Full Text PDF

In 2007, approximately 420,500 cubic meters of contaminated sediment were removed from the Ashtabula River by dredging. The primary objective of the present study was to monitor contaminant exposure in fish and macroinvertebrates before, during, and after dredging. This was done by measuring tissue concentrations of polychlorinated biphenyl (PCB) and polycyclic aromatic hydrocarbon (PAH) in brown bullhead catfish (Ameriurus nebulosa) and in benthic macroinvertebrates, assessing changes in DNA damage in fish liver and blood, and scoring external and histopathological lesions and anomalies in the fish.

View Article and Find Full Text PDF

The U.S. EPA conducted a national statistical survey of fish fillet tissue with a sample size of 541 sites on boatable rivers =>5th order in 2008-2009.

View Article and Find Full Text PDF

Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations.

View Article and Find Full Text PDF