Objectives: During gastrointestinal infection, dysbiosis can result in decreased production of microbially derived short-chain fatty acids (SCFAs). In response to the presence of intestinal pathogens, we examined whether an engineered acetate- or butyrate-releasing diet can rectify the deficiency of SCFAs and lead to the resolution of enteric infection.
Methods: We tested whether a high acetate- or butyrate-producing diet (HAMSA or HAMSB, respectively) condition infection in mice and assess its impact on host-microbiota interactions.
Maternal immune dysregulation seems to affect fetal or postnatal immune development. Preeclampsia is a pregnancy-associated disorder with an immune basis and is linked to atopic disorders in offspring. Here we show reduction of fetal thymic size, altered thymic architecture and reduced fetal thymic regulatory T (Treg) cell output in preeclamptic pregnancies, which persists up to 4 years of age in human offspring.
View Article and Find Full Text PDFGut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon.
View Article and Find Full Text PDFIt is now convincingly clear that diet is one of the most influential lifestyle factors contributing to the rise of inflammatory diseases and autoimmunity in both developed and developing countries. In addition, the modern 'Western diet' has changed in recent years with increased caloric intake, and changes in the relative amounts of dietary components, including lower fibre and higher levels of fat and poor quality of carbohydrates. Diet shapes large-bowel microbial ecology, and this may be highly relevant to human diseases, as changes in the gut microbiota composition are associated with many inflammatory diseases.
View Article and Find Full Text PDFTargeting the BAFF/APRIL system has shown to be effective in preventing T-cell dependent autoimmune disease in the NOD mouse, a spontaneous model of type 1 diabetes. In this study we generated BAFF-deficient NOD mice to examine how BAFF availability would influence T-cell responses in vivo and the development of spontaneous diabetes. BAFF-deficient NOD mice which lack mature B cells, were protected from diabetes and showed delayed rejection of an allogeneic islet graft.
View Article and Find Full Text PDF