Publications by authors named "James L McCallum"

Faults can fundamentally change a groundwater flow regime and represent a major source of uncertainty in groundwater studies. Much research has been devoted to uncertainty around their location and their barrier-conduit behavior. However, fault timing is one aspect of fault uncertainty that appears to be somewhat overlooked.

View Article and Find Full Text PDF

The quantification of carbon cycling across the groundwater-stream-atmosphere continuum (GSAC) is crucial for understanding regional and global carbon cycling. However, this quantification remains challenging due to highly coupled carbon exchange and turnover in the GSAC. Here, we disentangled carbon cycling processes in a representative groundwater-stream-atmosphere transect by obtaining and numerically simulating high-resolution time series of dissolved He, Ar, Kr, O, CO, and CH concentrations.

View Article and Find Full Text PDF

Sedimentary structures have unique geometries and anisotropic hydraulic conductivity, both of which control groundwater flow. Traditional finite-difference simulators (e.g.

View Article and Find Full Text PDF

The hyporheic zone (HZ) is considered a hydrodynamically-driven bioreactor with significant pollutant removal capacities and can therefore not only improve wholestream water quality but also preserve human and ecosystem health. Microbial metabolism is hypothesized to play a key role in pollutant transformation in hyporheic sediments of natural streams. However, previous work investigating the influence of microbial metabolism on pollutant transformation has been predominantly laboratory studies.

View Article and Find Full Text PDF

Assessing the transport and reactive processes of contaminants in freshwater streams is crucial in managing water resources sustainably. Particularly the hyporheic zone, the sediment-water interface where surface water and groundwater mix, may possess significant contaminant removal capacities due to its myriad physical, chemical, and microbiological processes. However, modelling approaches aiming at assessing the hyporheic zone's reactivity are either based on simple assumptions, such as, predefining the shape of the residence times distribution (RTD) function, or are computationally not feasible due to a too detailed system characterisation.

View Article and Find Full Text PDF

Accurate representation of groundwater flow and solute transport requires a sound representation of the underlying geometry of aquifers. Faults can have a significant influence on the structure and connectivity of aquifers, which may allow permeable units to connect, and aquifers to seal when juxtaposed against lower permeability units. Robust representation of groundwater flow around faults remains challenging despite the significance of faults for flow and transport.

View Article and Find Full Text PDF

First-order half-lives for 26 trace organic compounds (TrOCs) were determined in the hyporheic zone (HZ) and along a 3 km reach of a first-order stream in South Australia during both dry and wet seasons. Two salt tracer experiments were conducted and evaluated using a transient storage model to characterize seasonal differences in stream residence time and transient storage. Lagrangian and time-integrated surface water sampling were conducted to calculate half-lives in the surface water.

View Article and Find Full Text PDF

Hydraulic head differences across the screened or open interval of a well significantly influence the sampled water mixture. Sample bias can occur due to an insufficient pumping rate and/or due to native groundwater displacement by intraborehole flow (IBF). Proper understanding of the sampled water mixture is crucial for accurate interpretation of environmental tracers and groundwater chemistry data, and hence groundwater characterization.

View Article and Find Full Text PDF

Apparent ages obtained from the measured concentrations of environmental tracers have the potential to inform recharge rates, flow rates, and assist in the calibration of groundwater models. A number of studies have investigated sources of error in the relationships between the apparent ages, and the age assumed by models to relate this quantity to an aquifer property (e.g.

View Article and Find Full Text PDF

The interpretation of apparent ages often assumes that a water sample is composed of a single age. In heterogeneous aquifers, apparent ages estimated with environmental tracer methods do not reflect mean water ages because of the mixing of waters from many flow paths with different ages. This is due to nonlinear variations in atmospheric concentrations of the tracer with time resulting in biases of mixed concentrations used to determine apparent ages.

View Article and Find Full Text PDF