Isoprenylcysteine carboxyl methyltransferases (Icmts) are a class of integral membrane protein methyltransferases localized to the endoplasmic reticulum (ER) membrane in eukaryotes. The Icmts from human (hIcmt) and Saccharomyces cerevisiae (Ste14p) catalyze the α-carboxyl methyl esterification step in the post-translational processing of CaaX proteins, including the yeast a-factor mating pheromones and both human and yeast Ras proteins. Herein, we evaluated synthetic analogs of two well-characterized Icmt substrates, N-acetyl-S-farnesyl-L-cysteine (AFC) and the yeast a-factor peptide mating pheromone, that contain photoactive benzophenone moieties in either the lipid or peptide portion of the molecule.
View Article and Find Full Text PDFHuman protein isoprenylcysteine carboxyl methyltransferase (hIcmt) is the enzyme responsible for the α-carboxyl methylation of the C-terminal isoprenylated cysteine of CaaX proteins, including Ras proteins. This specific posttranslational methylation event has been shown to be important for cellular transformation by oncogenic Ras isoforms. This finding led to interest in hIcmt inhibitors as potential anti-cancer agents.
View Article and Find Full Text PDFPrenylcysteine derivatives are of interest for a variety of different biological reasons, including probing the CaaX protein processing pathway. A solid-phase synthesis protocol for the preparation of prenylcysteines using 2-chlorotrityl chloride resin as a solid support has been developed. A series of novel amide-modified farnesylcysteine analogs were synthesized in both high purity and yield under mild conditions.
View Article and Find Full Text PDFN-Acetyl-S-farnesyl-L-cysteine (AFC) is the minimal substrate for the enzyme isoprenylcysteine carboxyl methyltransferase (Icmt). A series of amide-modified farnesylcysteine analogs were synthesized and screened against human Icmt. From a 23-membered library of compounds, six inhibitors were identified and evaluated further.
View Article and Find Full Text PDF