Publications by authors named "James L Dimond"

Bivalve transmissible neoplasia (BTN) is one of three known types of naturally transmissible cancer-cancers in which the whole cancer cells move from individual to individual, spreading through natural populations. BTN is a lethal leukemia-like cancer that has been observed throughout soft-shell clam () populations on the east coast of North America, with two distinct sublineages circulating at low enzootic levels in New England, USA, and Prince Edward Island, Canada. Major cancer outbreaks likely due to BTN (MarBTN) were reported in 1980s and the 2000s and the disease has been observed since the 1970s, but it has not been observed in populations of this clam species on the US west coast.

View Article and Find Full Text PDF

Coastal Indigenous communities that rely on subsistence harvests are uniquely vulnerable to declines in nearshore species. The basket cockle is among the favored foods of Indigenous people along the northwest Pacific coast of North America, yet localized declines in their abundance have led to interest in stock enhancement efforts. We used a population genomics approach to examine potential risks associated with stock enhancement of in the southern Salish Sea, a large inland estuary that includes Puget Sound.

View Article and Find Full Text PDF

Symbiosis with protists is common among cnidarians such as corals and sea anemones and is associated with homeostatic and phenotypic changes in the host that could have epigenetic underpinnings, such as methylation of CpG dinucleotides. We leveraged the sensitivity to base modifications of nanopore sequencing to probe the effect of symbiosis with the chlorophyte Elliptochloris marina on methylation in the sea anemone Anthopleura elegantissima. We first validated the approach by comparison of nanopore-derived methylation levels with CpG depletion analysis of a published transcriptome, finding that high methylation levels are associated with CpG depletion as expected.

View Article and Find Full Text PDF

There is a growing body of literature using transcriptomic data to study how tropical cnidarians and their photosynthetic endosymbionts respond to environmental stressors and participate in metabolic exchange. Despite these efforts, our understanding of how essential genes function to facilitate symbiosis establishment and maintenance remains limited. The inclusion of taxonomically and ecologically diverse endosymbionts will enhance our understanding of these interactions.

View Article and Find Full Text PDF

Incongruence between conventional and molecular systematics has left the delineation of many species unresolved. Reef-building corals are no exception, with phenotypic plasticity among the most plausible explanations for alternative morphospecies. As potential molecular signatures of phenotypic plasticity, epigenetic processes may contribute to our understanding of morphospecies.

View Article and Find Full Text PDF

DNA methylation is an epigenetic mark that plays an inadequately understood role in gene regulation, particularly in nonmodel species. Because it can be influenced by the environment, DNA methylation may contribute to the ability of organisms to acclimatize and adapt to environmental change. We evaluated the distribution of gene body methylation in reef-building corals, a group of organisms facing significant environmental threats.

View Article and Find Full Text PDF

Along the North American Pacific coast, the common intertidal sea anemone Anthopleura elegantissima engages in facultative, flexible symbioses with Symbiodinium muscatinei (a dinoflagellate) and Elliptochloris marina (a chlorophyte). Determining how symbiotic state affects host fitness is essential to understanding the ecological significance of engaging in such flexible relationships with diverse symbionts. Fitness consequences of hosting S.

View Article and Find Full Text PDF

For cnidarians that can undergo shifts in algal symbiont relative abundance, the underlying algal physiological changes that accompany these shifts are not well known. The sea anemone Anthopleura elegantissima associates with the dinoflagellate Symbiodinium muscatinei and the chlorophyte Elliptochloris marina, symbionts with very different tolerances to light and temperature. We compared the performance of these symbionts in anemones maintained in an 8-11.

View Article and Find Full Text PDF

The processes by which cnidarians and their algal endosymbionts achieve balanced growth and biomass could include coordination of host and symbiont cell cycles. We evaluated this theory with natural populations of sea anemones hosting symbiotic dinoflagellates, focusing on the temperate sea anemone Anthopleura elegantissima symbiotic with Symbiodinium muscatinei in Washington State, USA, and the tropical anemone Stichodactyla helianthus associating with unknown Symbiodinium spp. in Belize.

View Article and Find Full Text PDF

The susceptibility of algal-cnidarian holobionts to environmental stress is dependent on attributes of both host and symbiont, but the role of the host is often unclear. We examined the influence of the host on symbiont light stress, comparing the photophysiology of the chlorophyte symbiont Elliptochloris marina in two species of sea anemones in the genus Anthopleura. After 3 months of acclimation in outdoor tanks, polyp photoprotective contraction behavior was similar between the two host species, but photochemical efficiency was 1.

View Article and Find Full Text PDF