Background And Aims: Inflammatory response is crucial for bile acid (BA)-induced cholestatic liver injury, but molecular mechanisms remain to be elucidated. Solute Carrier Family 35 Member C1 (SLC35C1) can transport Guanosine diphosphate-fucose into the Golgi to facilitate protein glycosylation. Its mutation leads to the deficiency of leukocyte adhesion and enhances inflammation in humans.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
November 2023
Background & Aims: OATP1B3/SLCO1B3 is a human liver-specific transporter for the clearance of endogenous compounds (eg, bile acid [BA]) and xenobiotics. The functional role of OATP1B3 in humans has not been characterized, as SLCO1B3 is poorly conserved among species without mouse orthologs.
Methods: Slc10a1-knockout (Slc10a1), Slc10a1 (endogenous mouse Slc10a1 promoter-driven human-SLCO1B3 expression in Slc10a1 mice), and human SLCO1B3 liver-specific transgenic (hSLCO1B3-LTG) mice were generated and challenged with 0.
Cholangiocytes play a crucial role in bile formation. Cholangiocyte injury causes cholestasis, including primary biliary cholangitis (PBC). However, the etiology of PBC remains unclear despite being characterized as an autoimmune disease.
View Article and Find Full Text PDFBackground And Aims: Bile acids trigger a hepatic inflammatory response, causing cholestatic liver injury. Runt-related transcription factor-1 (RUNX1), primarily known as a master modulator in hematopoiesis, plays a pivotal role in mediating inflammatory responses. However, RUNX1 in hepatocytes is poorly characterized, and its role in cholestasis is unclear.
View Article and Find Full Text PDFGenetic polymorphisms are associated with the development of nonalcoholic fatty liver disease (NAFLD). Semaphorin7a (Sema7a) deficiency in mouse peritoneal macrophages reduces fatty acid (FA) oxidation. Here, we identified 17 individuals with SEMA7A heterozygous mutations in 470 patients with biopsy-proven NAFLD.
View Article and Find Full Text PDFChronic liver diseases, e.g., cholestasis, are negatively impacted by inflammation, which further aggravates liver injury.
View Article and Find Full Text PDFBackground & Aims: Psychological and life stressors may impact autoimmune hepatitis (AIH) disease activity and increase relapse risk. Mindfulness-based stress reduction (MBSR) is a validated course that reduces stress reactivity, and improves stress and emotion regulation. This single-arm exploratory pilot study of adult patients with AIH aimed to define the impact of an 8-week MBSR program on quality of life, disease activity, and cytokine mediators.
View Article and Find Full Text PDFBackground: We investigated associations between baseline use of immunosuppressive drugs and severity of Coronavirus Disease 2019 (COVID-19) in autoimmune hepatitis (AIH).
Patients And Methods: Data of AIH patients with laboratory confirmed COVID-19 were retrospectively collected from 15 countries. The outcomes of AIH patients who were on immunosuppression at the time of COVID-19 were compared to patients who were not on AIH medication.
Semaphorin 7A (SEMA7A) is a membrane-bound protein that involves axon growth and other biological processes. SEMA7A mutations are associated with vertebral fracture and Kallmann syndrome. Here, we report a case with a mutation in SEMA7A that displays familial cholestasis.
View Article and Find Full Text PDFAccumulation of cytotoxic bile acids (BAs) during cholestasis can result in liver failure. Glucuronidation, a phase II metabolism pathway responsible for BA detoxification, is regulated by peroxisome proliferator-activated receptor alpha (PPARα). This study investigates the efficacy of adjunct fenofibrate therapy to up-regulate BA-glucuronidation and reduce serum BA toxicity during cholestasis.
View Article and Find Full Text PDFClinical disorders that impair bile flow result in retention of bile acids and cholestatic liver injury, characterized by parenchymal cell death, bile duct proliferation, liver inflammation and fibrosis. However, the pathogenic role of bile acids in the development of cholestatic liver injury remains incompletely understood. In this review, we summarize the current understanding of this process focusing on the experimental and clinical evidence for direct effects of bile acids on each major cellular component of the liver: hepatocytes, cholangiocytes, stellate cells and immune cells.
View Article and Find Full Text PDFTranslational studies in human cholestatic diseases have for years been hindered by various challenges, including the rarity of the disorders, the difficulty in obtaining biliary tissue from across the spectrum of the disease stage, and the difficulty culturing and maintaining primary cholangiocytes. Organoid technology is increasingly being viewed as a technological breakthrough in translational medicine as it allows the culture and biobanking of self-organizing cells from various sources that facilitate the study of pathophysiology and therapeutics, including from individual patients in a personalized approach. This review describes current research using biliary organoids for the study of human cholestatic diseases and the emerging applications of organoids to regenerative medicine directed at the biliary tree.
View Article and Find Full Text PDFBackground And Aims: Data regarding outcome of COVID-19 in patients with autoimmune hepatitis (AIH) are lacking.
Approach And Results: We performed a retrospective study on patients with AIH and COVID-19 from 34 centers in Europe and the Americas. We analyzed factors associated with severe COVID-19 outcomes, defined as the need for mechanical ventilation, intensive care admission, and/or death.
Bile formation is a fundamental physiological process that is vital to the survival of all vertebrates. However, little was known about the mechanisms of this secretion until after World War II. Initial studies involved classic physiologic studies in animal models and humans, which progressed to include studies in isolated cells and membrane vesicles.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
May 2021
Activated by retinoids, metabolites of vitamin A, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs) play important roles in a wide variety of biological processes, including embryo development, homeostasis, cell proliferation, differentiation and death. In this review, we summarized the functional roles of nuclear receptor RAR/RXR heterodimers in liver physiology. Specifically, RAR/RXR modulate the synthesis and metabolism of lipids and bile acids in hepatocytes, regulate cholesterol transport in macrophages, and repress fibrogenesis in hepatic stellate cells.
View Article and Find Full Text PDFBackground & Aims: The nuclear factor of activated T-cells (NFAT) plays an important role in immune responses by regulating the expression of inflammatory genes. However, it is not known whether NFAT plays any role in the bile acid (BA)-induced hepatic inflammatory response. Thus, we aimed to examine the functional role of NFATc3 in cholestatic liver injury in mice and humans.
View Article and Find Full Text PDFClin Pharmacol Ther
December 2020
Cholestatic liver diseases result in the hepatic retention of bile acids, causing subsequent liver toxicity. Peroxisome proliferator-activated receptor alpha (PPARα) regulates bile acid metabolism. In this retrospective observational study, we assessed the effects of fenofibrate (a PPARα agonist) therapy on bile acid metabolism when given to patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) who have had an incomplete response to Ursodiol monotherapy.
View Article and Find Full Text PDFPathological activation of TGF-β signaling is universal in fibrosis. Aberrant TGF-β signaling in conjunction with transdifferentiation of hepatic stellate cells (HSCs) into fibrogenic myofibroblasts plays a central role in liver fibrosis. Here we report that the DNA demethylase TET3 is anomalously upregulated in fibrotic livers in both humans and mice.
View Article and Find Full Text PDFBackground & Aims: Inflammation plays an important role in the pathogenesis of cholestatic liver injury, but it is unclear whether the inflammasome is involved and is the objective of this study.
Methods: Gene expression was analyzed in the livers of patients with primary biliary cholangitis (n = 15) and primary sclerosing cholangitis (n = 15). Bile duct ligation (BDL) or sham operation was performed in wild-type (WT) and Caspase-1 (Casp1) mice for 7 days.