Publications by authors named "James Kronstad"

Pathogens must efficiently acquire nutrients from host tissue to proliferate, and strategies to block pathogen access therefore hold promise for disease control. In this study, we investigated whether heme biosynthesis is an effective target for ablating the virulence of the phytopathogenic fungus Ustilago maydis on maize plants. We first constructed conditional heme auxotrophs of the fungus by placing the heme biosynthesis gene hem12 encoding uroporphyrinogen decarboxylase (Urod) under the control of nitrogen or carbon source-regulated promoters.

View Article and Find Full Text PDF

There is an urgent need for new antifungal drugs to treat invasive fungal diseases. Unfortunately, the echinocandin drugs that are fungicidal against other important fungal pathogens are ineffective against , the causative agent of life-threatening meningoencephalitis in immunocompromised people. Contributing mechanisms for echinocandin tolerance are emerging with connections to calcineurin signaling, the cell wall, and membrane composition.

View Article and Find Full Text PDF

The basidiomycete fungus is a useful model for investigating mechanisms of fungal pathogenesis in mammalian hosts. This pathogen is the causative agent of cryptococcal meningitis in immunocompromised patients and is in the critical priority group of the World Health Organization fungal priority pathogens list. In this study, we employed a mutant lacking the gene encoding a methylene-fatty-acyl-phospholipid synthase to characterize the role of phosphatidylcholine (PC) and lipid homeostasis in the virulence of .

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the Rab GTPase, Ypt7, in a fungal pathogen that causes severe meningoencephalitis, highlighting its crucial role in late endosomal trafficking and vacuole biogenesis in fungi.
  • - Researchers found that deletion of Ypt7 led to abnormal vacuole shapes, issues with cellular processes like endocytosis and autophagy, and misplacement of the enzyme Aph1, showing its importance in proper cellular function.
  • - Ypt7 is essential for growth under various stress conditions, including high temperatures and calcium levels, and is also necessary for the pathogen's survival during immune challenges, indicating its significance in cryptococcal virulence.
View Article and Find Full Text PDF

The fungal pathogen Cryptococcus neoformans is well adapted to its host environment. It has several defence mechanisms to evade oxidative and nitrosative agents released by phagocytic host cells during infection. Among them, melanin production is linked to both fungal virulence and defence against harmful free radicals that facilitate host innate immunity.

View Article and Find Full Text PDF

Unlabelled: causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against .

View Article and Find Full Text PDF

Fungi employ diverse mechanisms for iron uptake to ensure proliferation and survival in iron-limited environments. Siderophores are secondary metabolite small molecules with a high affinity specifically for ferric iron; these molecules play an essential role in iron acquisition in fungi and significantly influence fungal physiology and virulence. Fungal siderophores, which are primarily hydroxamate types, are synthesized via non-ribosomal peptide synthetases (NRPS) or NRPS-independent pathways.

View Article and Find Full Text PDF

Mitochondrial functions are critical for the ability of the fungal pathogen to cause disease. However, mechanistic connections between key functions such as the mitochondrial electron transport chain (ETC) and virulence factor elaboration have yet to be thoroughly characterized. Here, we observed that inhibition of ETC complex III suppressed melanin formation, a major virulence factor.

View Article and Find Full Text PDF

Mitochondrial functions are critical for the ability of the fungal pathogen to cause disease. However, mechanistic connections between key functions such as the mitochondrial electron transport chain (ETC) and virulence factor elaboration have yet to be thoroughly characterized. Here, we observed that inhibition of ETC complex III suppressed melanin formation, a major virulence factor.

View Article and Find Full Text PDF

The corn smut fungus, , is an excellent model for studying biotrophic plant-pathogen interactions, including nutritional adaptation to the host environment. Iron acquisition during host colonization is a key aspect of microbial pathogenesis yet less is known about this process for fungal pathogens of plants. Monothiol glutaredoxins are central regulators of key cellular functions in fungi, including iron homeostasis, cell wall integrity, and redox status via interactions with transcription factors, iron-sulfur clusters, and glutathione.

View Article and Find Full Text PDF

Fungal pathogens cause life-threatening diseases in humans, and the increasing prevalence of these diseases emphasizes the need for new targets for therapeutic intervention. Nutrient acquisition during infection is a promising target, and recent studies highlight the contributions of endomembrane trafficking, mitochondria, and vacuoles in the sensing and acquisition of heme by fungi. These studies have been facilitated by genetically encoded biosensors and other tools to quantitate heme in subcellular compartments and to investigate the dynamics of trafficking in living cells.

View Article and Find Full Text PDF

Agrobacterium-mediated transformation enables random transfer-DNA (T-DNA) insertion into plant genomes. T-DNA insertion into a gene's exons, introns or untranscribed regions close to the start or stop codon can disrupt gene function. Such T-DNA mutants have been useful for reverse genetics analysis, especially in Arabidopsis thaliana.

View Article and Find Full Text PDF

The current therapeutic challenges for treating fungal diseases demand new approaches and new drugs. A promising strategy involves combination therapy with agents of distinct mechanisms of action to increase fungicidal activity and limit the impact of mutations leading to resistance. In this study, we evaluated the antifungal potential of bortezomib by examining the inhibition of proteasome activity, cell proliferation, and capsule production by , the causative agent of fungal meningoencephalitis.

View Article and Find Full Text PDF

Recent studies in pathogenic yeasts reinforce our appreciation of the influence of metal homeostasis on the fungal cell surface. To illustrate this influence, we focus on recent studies on Cryptococcus neoformans, a fungal pathogen with a complex surface of a cell wall with embedded melanin and an attached polysaccharide capsule. Copper and iron are essential yet toxic metals, and current efforts demonstrate the importance of these metals for modulating the surface structure of C.

View Article and Find Full Text PDF

Cryptococcus gattii and Cryptococcus neoformans are the main etiological agents of cryptococcosis, an invasive mycosis treated with amphotericin B, 5-fluorocytosine, and fluconazole. This limited arsenal is toxic and is associated with antifungal resistance. Cryptococcosis and malaria pathogens are eukaryotic organisms that have a high incidence in Sub-Saharan Africa.

View Article and Find Full Text PDF

Verticillium transcription activator of adhesion 3 (Vta3) is required for plant root colonization and pathogenicity of the soil-borne vascular fungus Verticillium dahliae. RNA sequencing identified Vta3-dependent genetic networks required for growth in tomato xylem sap. Vta3 affects the expression of more than 1,000 transcripts, including candidates with predicted functions in virulence and morphogenesis such as Egh16-like virulence factor 1 (Elv1) and Master transcription factor 1 (Mtf1).

View Article and Find Full Text PDF

causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms.

View Article and Find Full Text PDF

The phenotypic plasticity of Cryptococcus neoformans is widely studied and demonstrated in vitro, but its influence on pathogenicity remains unclear. In this study, we investigated the dynamics of cryptococcal cell and transcriptional remodeling during pulmonary infection in a murine model. We showed that in Cryptococcus neoformans, cell size reduction (cell body ≤ 3 µm) is important for initial adaptation during infection.

View Article and Find Full Text PDF

The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation.

View Article and Find Full Text PDF

Unlabelled: Ferritin, a major iron storage protein in vertebrates, supplies iron upon iron deficiency. Ferritin is also found extracellularly, and acts as an iron carrier and a contributor to the immune response to invading microbes. Some microbial pathogens take advantage of ferritin as an iron source upon infection.

View Article and Find Full Text PDF

Many plant-associated fungi are obligate biotrophs that depend on living hosts to proliferate. However, little is known about the molecular basis of the biotrophic lifestyle, despite the impact of fungi on the environment and food security. In this work, we show that combinations of organic acids and glucose trigger phenotypes that are associated with the late stage of biotrophy for the maize pathogen .

View Article and Find Full Text PDF

Histone chaperoning ensures genomic integrity during routine processes such as DNA replication and transcription as well as DNA repair upon damage. Here, we identify a nuclear J domain protein, Dnj4, in the fungal pathogen Cryptococcus neoformans and demonstrate that it interacts with histones 3 and 4, suggesting a role as a histone chaperone. In support of this idea, a deletion mutant had elevated levels of DNA damage and was hypersensitive to DNA-damaging agents.

View Article and Find Full Text PDF

The pathogenic fungus Cryptococcus neoformans must overcome iron limitation to cause disease in mammalian hosts. Previously, we reported a screen for insertion mutants with poor growth on haem as the sole iron source. In this study, we characterised one such mutant and found that the defective gene encoded a Vam6/Vps39/TRAP1 domain-containing protein required for robust growth on haem, an important iron source in host tissue.

View Article and Find Full Text PDF

The capacity of opportunistic fungal pathogens such as to cause disease is dependent on their ability to overcome an onslaught of stresses including elevated temperature under mammalian host conditions. Protein chaperones and co-chaperones play key roles in thermotolerance. In this study, we characterized the role of the endoplasmic reticulum (ER) J-domain containing co-chaperone, Dnj1, in the virulence of .

View Article and Find Full Text PDF
Article Synopsis
  • Monothiol glutaredoxins, like Grx4, are crucial for maintaining iron homeostasis and play roles in sensing and transporting iron-sulfur clusters, particularly in the pathogen Cryptococcus neoformans.
  • Grx4 is essential for the fungus's growth at high temperatures and under stress, as demonstrated by the hypersensitivity of its mutant (grx4Δ) to compounds like SDS and caffeine, indicating compromised cell wall integrity.
  • The study also links Grx4's role to the regulation of the Mpk1 MAPK pathway and the calcineurin signaling pathway, suggesting it is vital for the organism's response to various environmental stresses beyond just iron regulation.
View Article and Find Full Text PDF