Publications by authors named "James Kochenderfer"

Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment.

View Article and Find Full Text PDF

Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of several haematological malignancies and is being investigated in patients with various solid tumours. Characteristic CAR T cell-associated toxicities such as cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are now well-recognized, and improved supportive care and management with immunosuppressive agents has made CAR T cell therapy safer and more feasible than it was when the first regulatory approvals of such treatments were granted in 2017. The increasing clinical experience with these therapies has also improved recognition of previously less well-defined toxicities, including movement disorders, immune effector cell-associated haematotoxicity (ICAHT) and immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), as well as the substantial risk of infection in patients with persistent CAR T cell-induced B cell aplasia and hypogammaglobulinaemia.

View Article and Find Full Text PDF

Unlabelled: Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment.

View Article and Find Full Text PDF

T cells expressing anti-CD19 chimeric antigen receptors (CARs) have activity against chronic lymphocytic leukemia (CLL), but complete response rates range from 18% to 29%, so improvement is needed. Peripheral blood mononuclear cells (PBMCs) of CLL patients often contain high levels of CLL cells that can interfere with CAR T cell production, and T cells from CLL patients are prone to exhaustion and other functional defects. We previously developed an anti-CD19 CAR designated Hu19-CD828Z.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma (MM) is a challenging cancer of plasma cells, and researchers developed a new treatment using a human anti-BCMA CAR called FHVH33-CD8BBZ to target it.
  • In a clinical trial involving 25 patients with relapsed MM, the treatment resulted in a 52% stringent complete response rate and a median progression-free survival of 78 weeks.
  • While some patients experienced cytokine-release syndrome, it was manageable and most anti-MM effects were observed within 2-4 weeks post-infusion, indicating the treatment's rapid and effective action against the disease.
View Article and Find Full Text PDF

New treatments are needed for relapsed and refractory CD30-expressing lymphomas. We developed a novel anti-CD30 chimeric antigen receptor (CAR), designated 5F11-28Z. Safety and feasibility of 5F11-28Z-transduced T cells (5F11-Ts) were evaluated in a phase 1 dose escalation clinical trial.

View Article and Find Full Text PDF
Article Synopsis
  • The researchers developed a bicistronic CAR construct to combat CD19 loss in lymphoma after CAR T-cell therapy, incorporating both anti-CD19 and anti-CD20 CARs.
  • mRNA sequencing revealed deletions in some transcripts, likely due to errors during the reverse transcription process related to similar DNA sequences.
  • By optimizing the construct to minimize these repeated sequences and extending the linker for the anti-CD20 fragment, they significantly reduced deletions and enhanced the therapy's effectiveness, making the modified construct ready for clinical development.
View Article and Find Full Text PDF

Idecabtagene vicleucel (ide-cel) is a B-cell-maturation antigen (BCMA)-directed chimeric antigen receptor T cell therapy. We performed a post hoc analysis of a single-arm phase 1 multicenter study in relapsed/refractory multiple myeloma (CRB-401) (n = 62; median follow-up, 18.1 months).

View Article and Find Full Text PDF

Chimeric antigen receptors (CAR) are engineered fusion proteins designed to target T cells to antigens expressed on cancer cells. CAR T cells are now an established treatment for patients with relapsed and/or refractory B cell lymphomas, B cell acute lymphoblastic leukaemia and multiple myeloma. At the time of this writing, over a decade of follow-up data are available from the initial patients who received CD19-targeted CAR T cells for B cell malignancies.

View Article and Find Full Text PDF

The clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement.

View Article and Find Full Text PDF

Background: Multiparametric flow cytometry (MFC) has become a powerful tool in minimal residual disease (MRD) detection in B-lymphoblastic leukemia/lymphoma (B-ALL). In the setting of targeted immunotherapy, B-ALL MRD detection often relies on alterative gating strategies, such as the utilization of CD22 and CD24. It is important to depict the full diversity of normal cell populations included in the alternative B-cell gating methods to avoid false-positive results.

View Article and Find Full Text PDF

Background: Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear.

View Article and Find Full Text PDF

Cancer outcomes with chemotherapy are inferior in patients of minority racial/ethnic groups and those with obesity. Chimeric antigen receptor (CAR) T-cell therapy has transformed outcomes for relapsed/refractory hematologic malignancies, but whether its benefits extend commensurately to racial/ethnic minorities and patients with obesity is poorly understood. With a primary focus on patients with B-cell acute lymphoblastic leukemia (B-ALL), we retrospectively evaluated the impact of demographics and obesity on CAR T-cell therapy outcomes in adult and pediatric patients with hematologic malignancies treated with CAR T-cell therapy across 5 phase 1 clinical trials at the National Cancer Institute from 2012 to 2021.

View Article and Find Full Text PDF
Article Synopsis
  • * The analysis highlighted that a higher baseline of bone marrow malignancy involvement was linked to longer time to hematologic recovery (TTHR) after treatment.
  • * Additionally, patients experiencing severe cytokine-release syndrome (CRS) and those with increased CAR cell presence in bone marrow at 2 months also showed a trend towards delayed recovery from cytopenias.
View Article and Find Full Text PDF

B-cell-depleting therapies may lead to prolonged disease and viral shedding in individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and this viral persistence raises concern for viral evolution. We report sequencing of early and late samples from a 335-day infection in an immunocompromised patient. The virus accumulated a unique deletion in the amino-terminal domain of the spike protein, and complete deletion of ORF7b and ORF8, the first report of its kind in an immunocompromised patient.

View Article and Find Full Text PDF

Background: B-cell depleting therapies may lead to protracted disease and prolonged viral shedding in individuals infected with SARS-CoV-2. Viral persistence in the setting of immunosuppression raises concern for viral evolution.

Methods: Amplification of sub-genomic transcripts for the E gene (sgE) was done on nasopharyngeal samples over the course of 355 days in a patient infected with SARS-CoV-2 who had previously undergone CAR T cell therapy and had persistently positive SARS-CoV-2 nasopharyngeal swabs.

View Article and Find Full Text PDF

Infections are a known complication of chimeric antigen receptor (CAR) T-cell therapy with data largely emerging from CD19 CAR T-cell targeting. As CAR T-cell therapy continues to evolve, infection risks and management thereof will become increasingly important to optimize outcomes across the spectrum of antigens and disease targeted. We retrospectively characterized infectious complications occurring in 162 children and adults treated among 5 phase 1 CAR T-cell clinical trials.

View Article and Find Full Text PDF

Objectives: To report the epidemiology, treatments, and outcomes of adult patients admitted to the ICU after cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome.

Design: Retrospective cohort study.

Setting: Nine centers across the U.

View Article and Find Full Text PDF

Chimeric antigen receptors (CARs) are engineered proteins designed to target T cells to cancer cells. To effectively activate the T cells in which they are expressed, CARs must contain a costimulatory domain. The CAR T cell products approved for the treatment of B cell lymphomas and/or acute lymphoblastic leukaemia or multiple myeloma incorporate either a CD28-derived or a 4-1BB-derived costimulatory domain.

View Article and Find Full Text PDF

Chimeric antigen receptors (CARs) are artificial fusion proteins that incorporate antigen-recognition domains and T cell signaling domains. CD30 is a cell surface protein expressed on Hodgkin's lymphoma, some T cell lymphomas, and some B cell lymphomas. CD30 has a restricted expression pattern in normal cells, so CD30 has good potential as a clinical target for CAR T cells.

View Article and Find Full Text PDF