Publications by authors named "James Klaus"

The water surface microlayer (SML) serves as a boundary through which microbes can be exchanged. To evaluate exchanges of microbes, this study compared microbial communities within different reservoirs, with an emphasis on the water SML and aerosols. Additionally, the microbial communities during a sewage spill and perigean tides were evaluated and the results were compared to times without these events.

View Article and Find Full Text PDF

Studies are limited that evaluate seaweed as a source of bacteria to beach waters. The objective of the current study was to evaluate whether seaweed, along with humans and other animals, could be the cause of beach advisories due to elevated levels of enterococci. The monitoring period occurred a year prior to and through the COVID-19 beach shutdown period, which provided a unique opportunity to evaluate bacteria levels during prolonged periods without recreational activity.

View Article and Find Full Text PDF

This study examined the water-to-air transfer and viability of the fecal indicator bacteria, enterococci, and compared capture performance of an impactor and aerosol filter. Results show that concentration of viable enterococci collected by the impactor (70.1 colony-forming units [CFU]/L) was lower than that using the filter (171.

View Article and Find Full Text PDF

Although infectious disease risk from recreational exposure to waterborne pathogens has been an active area of research for decades, beach sand is a relatively unexplored habitat for the persistence of pathogens and fecal indicator bacteria (FIB). Beach sand, biofilms, and water all present unique advantages and challenges to pathogen introduction, growth, and persistence. These dynamics are further complicated by continuous exchange between sand and water habitats.

View Article and Find Full Text PDF

Unlabelled: Bacteriophages infect an estimated 10 to 10 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance).

View Article and Find Full Text PDF

Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification.

View Article and Find Full Text PDF

As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago.

View Article and Find Full Text PDF

The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance.

View Article and Find Full Text PDF

Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes.

View Article and Find Full Text PDF

Enterococci, recommended at the U.S. federal level for monitoring water quality at marine recreational beaches, have been found to reside and grow within beach sands.

View Article and Find Full Text PDF

Fecal indicator microbes, such as enterococci, are often used to assess potential health risks caused by pathogens at recreational beaches. Microbe levels often vary based on collection time and sampling location. The primary goal of this study was to assess how spatial and temporal variations in sample collection, which are driven by environmental parameters, impact enterococci measurements and beach management decisions.

View Article and Find Full Text PDF

The risk of global extinction of reef-building coral species is increasing. We evaluated extinction risk using a biological trait-based resiliency index that was compared with Caribbean extinction during the Plio-Pleistocene, and with extinction risk determined by the International Union for Conservation of Nature (IUCN). Through the Plio-Pleistocene, the Caribbean supported more diverse coral assemblages than today and shared considerable overlap with contemporary Indo-Pacific reefs.

View Article and Find Full Text PDF

Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones.

View Article and Find Full Text PDF

The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Curaçao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth.

View Article and Find Full Text PDF

Black band disease (BBD) is a virulent polymicrobial disease primarily affecting massive-framework-building species of scleractinian corals. While it has been well established that the BBD bacterial mat is dominated by a cyanobacterium, the quantitative composition of the BBD bacterial mat community has not described previously. Terminal-restriction fragment length polymorphism (T-RFLP) analysis was used to characterize the infectious bacterial community of the bacterial mat causing BBD.

View Article and Find Full Text PDF