Duchenne muscular dystrophy in boys progresses rapidly to severe impairment of muscle function and death in the second or third decade of life. Current supportive therapy with corticosteroids results in a modest increase in strength as a consequence of a general reduction in inflammation, albeit with potential untoward long-term side effects and ultimate failure of the agent to maintain strength. Here, we demonstrate that alternative approaches that rescue defective autophagy in mdx mice, a model of Duchenne muscular dystrophy, with the use of rapamycin-loaded nanoparticles induce a reproducible increase in both skeletal muscle strength and cardiac contractile performance that is not achievable with conventional oral rapamycin, even in pharmacological doses.
View Article and Find Full Text PDFColchicine treatment is associated with an autophagic vacuolar myopathy in human patients. The presumed mechanism of colchicine-induced myotoxicity is the destabilization of the microtubule system that leads to impaired autophagosome-lysosome fusion and the accumulation of autophagic vacuoles. Using the MTOR inhibitor rapamycin we augmented colchicine’s myotoxic effect by increasing the autophagic flux; this resulted in an acute myopathy with muscle necrosis.
View Article and Find Full Text PDFObjective: The glucose and dehydroascorbic acid (DHA) transporter GLUT1 contains a phosphorylation site, S490, for ataxia telangiectasia mutated (ATM). The objective of this study was to determine whether ATM and GLUT1-S490 regulate GLUT1.
Research Design And Methods: L6 myoblasts and mouse skeletal muscles were used to study the effects of ATM inhibition, ATM activation, and S490 mutation on GLUT1 localization, trafficking, and transport activity.
There are reports that ataxia telangiectasia mutated (ATM) plays a role in insulin-stimulated Akt phosphorylation, although this is not the case in some cell types. Because Akt plays a key role in insulin signaling, which leads to glucose transport in skeletal muscle, the predominant tissue in insulin-stimulated glucose disposal, we examined whether insulin-stimulated Akt phosphorylation and (or) glucose transport would be decreased in skeletal muscle of mice lacking functional ATM, compared with muscle from wild-type mice. We found that in vitro insulin-stimulated Akt phosphorylation was normal in soleus muscle from mice with 1 nonfunctional allele of ATM (ATM+/-) and from mice with 2 nonfunctional alleles (ATM-/-).
View Article and Find Full Text PDFPathological phenotypes in inclusion body myopathy (IBM) associated with Paget disease of the bone (PDB), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (IBMPFD/ALS) include defective autophagosome and endosome maturation that result in vacuolation, weakness and muscle atrophy. The link between autophagy and IBMPFD/ALS pathobiology has been poorly understood. We examined the AKT-FOXO3 and MTOR pathways to characterize the regulation of autophagy in IBMPFD/ALS mouse muscle.
View Article and Find Full Text PDFAutophagy is dysfunctional in many degenerative diseases including myopathies. Mutations in valosin-containing protein (VCP) cause inclusion body myopathy (IBM) associated with Paget's disease of the bone, fronto-temporal dementia and amyotrophic lateral sclerosis (IBMPFD/ALS). VCP is necessary for protein degradation via the proteasome and lysosome.
View Article and Find Full Text PDFReports that ataxia telangiectasia mutated (ATM) is required for full activation of Akt raise the hypothesis that ATM plays a role in insulin-like growth factor 1 (IGF-1) signalling through the Akt/mammalian target of rapamycin (mTOR) pathway. Differentiated C2C12 cells harbouring either ATM-targeting short hairpin RNA (shRNA) or non-targeting shRNA and myotubes from a C2C12 lineage previously exposed to empty vector lentivirus were incubated in the presence or absence of 10 nm IGF-1 followed by Western blot analysis. Parallel experiments were performed in isolated soleus muscles from mice expressing only one functional ATM allele (ATM(+/-)) compared with muscles from wild-type (ATM(+/+)) mice.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
October 2012
Hyperammonemia and sarcopenia (loss of skeletal muscle) are consistent abnormalities in cirrhosis and portosystemic shunting. We have shown that muscle ubiquitin-proteasome components are not increased with hyperammonemia despite sarcopenia. This suggests that an alternative mechanism of proteolysis contributes to sarcopenia in cirrhosis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2011
Cells lacking ataxia telangiectasia mutated (ATM) have impaired mitochondrial function. Furthermore, mammalian cells lacking ATM have increased levels of reactive oxygen species (ROS) as well as mitochondrial DNA (mtDNA) deletions in the region encoding for cytochrome c oxidase (COX). We hypothesized that ATM specifically influences COX activity in skeletal muscle.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2010
Serum starvation is a common cell culture procedure for increasing cellular response to insulin, though the mechanism for the serum starvation effect is not understood. We hypothesized that factors known to potentiate insulin action [e.g.
View Article and Find Full Text PDF