Publications by authors named "James J Starling"

Unlabelled: We have identified previously undiscovered BRAF in-frame deletions near the αC-helix region of the kinase domain in pancreatic, lung, ovarian, and thyroid cancers. These deletions are mutually exclusive with KRAS mutations and occur in 4.21% of KRAS wild-type pancreatic cancer.

View Article and Find Full Text PDF

LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers.

View Article and Find Full Text PDF

The RAS-RAF-MEK-MAPK cascade is an essential signaling pathway, with activation typically mediated through cell surface receptors. The kinase inhibitors vemurafenib and dabrafenib, which target oncogenic BRAF V600E, have shown significant clinical efficacy in melanoma patients harboring this mutation. Because of paradoxical pathway activation, both agents were demonstrated to promote growth and metastasis of tumor cells with RAS mutations in preclinical models and are contraindicated for treatment of cancer patients with BRAF WT background, including patients with KRAS or NRAS mutations.

View Article and Find Full Text PDF

B-RAF selective inhibitors, including vemurafenib, were recently developed as effective therapies for melanoma patients with B-RAF V600E mutation. However, most patients treated with vemurafenib eventually develop resistance largely due to reactivation of MAPK signaling. Inhibitors of MAPK signaling, including MEK1/2 inhibitor trametinib, failed to show significant clinical benefit in patients with acquired resistance to vemurafenib.

View Article and Find Full Text PDF

DNA-dependent RNA polymerase II (RNAP II) largest subunit RPB1 C-terminal domain (CTD) kinases, including CDK9, are serine/threonine kinases known to regulate transcriptional initiation and elongation by phosphorylating Ser 2, 5, and 7 residues on CTD. Given the reported dysregulation of these kinases in some cancers, we asked whether inhibiting CDK9 may induce stress response and preferentially kill tumor cells. Herein, we describe a potent CDK9 inhibitor, LY2857785, that significantly reduces RNAP II CTD phosphorylation and dramatically decreases MCL1 protein levels to result in apoptosis in a variety of leukemia and solid tumor cell lines.

View Article and Find Full Text PDF

p38α mitogen-activated protein kinase (MAPK) is activated in cancer cells in response to environmental factors, oncogenic stress, radiation, and chemotherapy. p38α MAPK phosphorylates a number of substrates, including MAPKAP-K2 (MK2), and regulates the production of cytokines in the tumor microenvironment, such as TNF-α, interleukin-1β (IL-1β), IL-6, and CXCL8 (IL-8). p38α MAPK is highly expressed in human cancers and may play a role in tumor growth, invasion, metastasis, and drug resistance.

View Article and Find Full Text PDF

LY2334737, an oral prodrug of gemcitabine, is cleaved in vivo, releasing gemcitabine and valproic acid. Oral dosing of mice results in absorption of intact prodrug with slow systemic hydrolysis yielding higher plasma levels of LY2334737 than gemcitabine and prolonged gemcitabine exposure. Antitumor activity was evaluated in human colon and lung tumor xenograft models.

View Article and Find Full Text PDF

Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months.

View Article and Find Full Text PDF

Prasugrel, a thienopyridine ADP receptor antagonist, is an orally administered prodrug requiring in vivo metabolism to form the active metabolite that irreversibly inhibits platelet activation and aggregation mediated by the P2Y12[sub 12] receptor. A comprehensive nonclinical safety assessment including genotoxicity and carcinogenicity studies supported the chronic use of prasugrel in patients with atherothrombotic disease. In addition, a special assessment of the potential for prasugrel to enhance tumor growth was undertaken to address regulatory concerns relating to increases in human cancers.

View Article and Find Full Text PDF

LY2457546 is a potent and orally bioavailable inhibitor of multiple receptor tyrosine kinases involved in angiogenic and tumorigenic signalling. In biochemical and cellular assays, LY2457546 demonstrates potent activity against targets that include VEGFR2 (KDR), PDGFRβ, FLT-3, Tie-2 and members of the Eph family of receptors. With activities against both Tie2 and Eph receptors, LY2457546 possesses an activity profile that distinguishes it from multikinase inhibitors.

View Article and Find Full Text PDF

The design, synthesis, and biological characterization of an orally active prodrug (3) of gemcitabine are described. Additionally, the identification of a novel co-crystal solid form of the compound is presented. Valproate amide 3 is orally bioavailable and releases gemcitabine into the systemic circulation after passing through the intestinal mucosa.

View Article and Find Full Text PDF

Background: Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy.

View Article and Find Full Text PDF

The interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment induces proliferation and survival of MM cells, as well as osteoclastogenesis. This study investigated the therapeutic potential of novel p38 mitogen-activated protein kinase (p38MAPK) inhibitor LY2228820 (LY) in MM. Although cytotoxicity against MM cell lines was modest, LY significantly enhanced the toxicity of bortezomib by down-regulating bortezomib-induced heat shock protein 27 phosphorylation.

View Article and Find Full Text PDF

Multidrug resistance protein-5 (MRP5, ABCC5) is a member of the ATP-binding cassette transporter superfamily that effluxes a broad range of natural and xenobiotic compounds such as cyclic GMP, antiviral compounds, and cancer chemotherapeutic agents including nucleoside-based drugs, antifolate agents and platinum compounds. In cellular assays, MRP5 transfectants are less fluorescent after incubation with 5-chloromethylfluorescein diacetate (CMFDA). The present study examines the uptake of a close fluorescent analog, carboxydichlorofluorescein (CDCF), and drug substrates into inside-out membrane vesicles prepared from MRP transfected cells.

View Article and Find Full Text PDF

Structure-activity relationship (SAR) studies on the tricyclic isoxazole series of MRP1 modulators have resulted in the identification of potent and selective inhibitors containing cyclohexyl-based linkers. These studies ultimately identified compound 21b, which reverses drug resistance to MRP1 substrates, such as doxorubicin, in HeLa-T5 cells (EC(50)=0.093microM), while showing no inherent cytotoxicity.

View Article and Find Full Text PDF

Our study examines the ability of LY335979 (Zosuquidar trihydrochloride) to modulate 3 distinct ABC transporters that are mechanisms of drug resistance: P-glycoprotein (Pgp, ABCB1), multidrug resistance associated protein (MRP1, ABCC2) and breast cancer resistance protein (BCRP, ABCG2). Pgp-mediated resistance can be modulated by coadministration with the highly potent, selective inhibitor, LY335979. Modulation of resistance by mitoxantrone and vinorelbine, 2 drugs used to treat certain solid tumors, was examined in a 3-day cytotoxicity assay using a panel of HL60 leukemia cell lines or MCF-7 breast cancer transfectants.

View Article and Find Full Text PDF

Tricyclic isoxazoles were identified from a screen as a novel class of selective multidrug resistance protein (MRP1) inhibitors. From a screen lead, SAR efforts resulted in the preparation of LY 402913 (9h), which inhibits MRP1 and reverses drug resistance to MRP1 substrates, such as doxorubicin, in HeLa-T5 cells (EC(50)=0.90 microM), while showing no inherent cytotoxicity.

View Article and Find Full Text PDF

U-937 human leukemia cells were selected for resistance to doxorubicin in the presence or absence of a specific drug modulator that inhibits the activity of P-glycoprotein (Pgp), encoded by the multidrug-resistance gene (MDR1). Parental cells expressed low basal levels of the multidrug-resistance-associated gene (MRP1) and major vault protein (MVP) mRNAs and no MDR1 mRNA. Two doxorubicin-resistant cell lines were selected.

View Article and Find Full Text PDF