Publications by authors named "James J H St Clair"

Many mutualisms are exploited by third-party species, which benefit without providing anything in return. Exploitation can either destabilize or promote mutualisms, via mechanisms that are highly dependent on the ecological context. Here we study a remarkable bird-human mutualism, in which wax-eating greater honeyguides () guide humans () to wild bees' nests, in an exchange of knowledge about the location of nests for access to the wax combs inside.

View Article and Find Full Text PDF

Some animals fashion tools or constructions out of plant materials to aid foraging, reproduction, self-maintenance, or protection. Their choice of raw materials can affect the structure and properties of the resulting artifacts, with considerable fitness consequences. Documenting animals' material preferences is challenging, however, as manufacture behavior is often difficult to observe directly, and materials may be processed so heavily that they lack identifying features.

View Article and Find Full Text PDF
Article Synopsis
  • When parents reproduce successfully, they are more likely to divorce and seek new mates rather than stay together, contrary to traditional evolutionary expectations.
  • Data from plover populations show that successful nesting leads to divorce, while failed nests result in parents sticking together for future breeding.
  • Divorcing parents often produce more offspring in a season than those who remain with their partner, highlighting divorce as an adaptive strategy to enhance reproductive success, influenced by factors like temperature.
View Article and Find Full Text PDF

Very few animal species habitually make and use foraging tools. We recently discovered that the Hawaiian crow is a highly skilled, natural tool user. Most captive adults in our experiment spontaneously used sticks to access out-of-reach food from a range of extraction tasks, exhibiting a surprising degree of dexterity.

View Article and Find Full Text PDF

Recent research shows that New Caledonian crows can incorporate information from researcher-made objects into objects they subsequently manufacture. This 'mental template matching' is one of several possible - mutually compatible - mechanisms for the cultural transmission of tool designs among wild crows.

View Article and Find Full Text PDF

The New Caledonian crow is the only non-human animal known to craft hooked tools in the wild, but the ecological benefit of these relatively complex tools remains unknown. Here, we show that crows acquire food several times faster when using hooked rather than non-hooked tools, regardless of tool material, prey type and extraction context. This implies that small changes to tool shape can strongly affect energy-intake rates, highlighting a powerful driver for technological advancement.

View Article and Find Full Text PDF

Hominins have been making tools for over three million years [1], yet the earliest known hooked tools appeared as recently as 90,000 years ago [2]. Hook innovation is likely to have boosted our ancestors' hunting and fishing efficiency [3], marking a major transition in human technological evolution. The New Caledonian crow is the only non-human animal known to craft hooks in the wild [4, 5].

View Article and Find Full Text PDF

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring).

View Article and Find Full Text PDF

Functional tool use requires the selection of appropriate raw materials. New Caledonian crows are known for their extraordinary tool-making behaviour, including the crafting of hooked stick tools from branched vegetation. We describe a surprisingly strong between-site difference in the plant materials used by wild crows to manufacture these tools: crows at one study site use branches of the non-native shrub , whereas only approximately 7 km away, birds apparently ignore this material in favour of the terminal twigs of an as-yet-unidentified tree species.

View Article and Find Full Text PDF

'Betty' the New Caledonian crow astonished the world when she 'spontaneously' bent straight pieces of garden wire into hooked foraging tools. Recent field experiments have revealed that tool bending is part of the species' natural behavioural repertoire, providing important context for interpreting Betty's iconic wire-bending feat. More generally, this discovery provides a compelling illustration of how natural history observations can inform laboratory-based research into the cognitive capacities of non-human animals.

View Article and Find Full Text PDF

Only a handful of bird species are known to use foraging tools in the wild. Amongst them, the New Caledonian crow (Corvus moneduloides) stands out with its sophisticated tool-making skills. Despite considerable speculation, the evolutionary origins of this species' remarkable tool behaviour remain largely unknown, not least because no naturally tool-using congeners have yet been identified that would enable informative comparisons.

View Article and Find Full Text PDF

Background: New Caledonian crows use a range of foraging tools, and are the only non-human species known to craft hooks. Based on a small number of observations, their manufacture of hooked stick tools has previously been described as a complex, multi-stage process. Tool behaviour is shaped by genetic predispositions, individual and social learning, and/or ecological influences, but disentangling the relative contributions of these factors remains a major research challenge.

View Article and Find Full Text PDF

Social-network dynamics have profound consequences for biological processes such as information flow, but are notoriously difficult to measure in the wild. We used novel transceiver technology to chart association patterns across 19 days in a wild population of the New Caledonian crow--a tool-using species that may socially learn, and culturally accumulate, tool-related information. To examine the causes and consequences of changing network topology, we manipulated the environmental availability of the crows' preferred tool-extracted prey, and simulated, in silico, the diffusion of information across field-recorded time-ordered networks.

View Article and Find Full Text PDF

Growing interest in the structure and dynamics of animal social networks has stimulated efforts to develop automated tracking technologies that can reliably record encounters in free-ranging subjects. A particularly promising approach is the use of animal-attached 'proximity loggers', which collect data on the incidence, duration and proximity of spatial associations through inter-logger radio communication. While proximity logging is based on a straightforward physical principle - the attenuation of propagating radio waves with distance - calibrating systems for field deployment is challenging, since most study species roam across complex, heterogeneous environments.

View Article and Find Full Text PDF

Several animal species use tools for foraging, such as sticks to extract embedded arthropods and honey, or stones to crack open nuts and eggs. While providing access to nutritious foods, these behaviours may incur significant costs, such as the time and energy spent searching for, manufacturing and transporting tools. These costs can be reduced by re-using tools, keeping them safe when not needed.

View Article and Find Full Text PDF

The ability to attend to the functional properties of foraging tools should affect energy-intake rates, fitness components and ultimately the evolutionary dynamics of tool-related behaviour. New Caledonian crows Corvus moneduloides use three distinct tool types for extractive foraging: non-hooked stick tools, hooked stick tools and tools cut from the barbed edges of Pandanus spp. leaves.

View Article and Find Full Text PDF

New Caledonian (NC) crows Corvus moneduloides are the most prolific avian tool users. In the wild, they use at least three distinct tool types to extract invertebrate prey from deadwood and vegetation, with some of their tools requiring complex manufacture, modification and/or deployment. Experiments with captive-bred, hand-raised NC crows have demonstrated that the species has a strong genetic predisposition for basic tool use and manufacture, suggesting that this behaviour is an evolved adaptation.

View Article and Find Full Text PDF

The ability to recognize and respond to the alarm calls of heterospecifics has previously been described only in species with vocal communication. Here we provide evidence that a non-vocal reptile, the Galápagos marine iguana (Amblyrhynchus cristatus), can eavesdrop on the alarm call of the Galápagos mockingbird (Nesomimus parvulus) and respond with anti-predator behaviour. Eavesdropping on complex heterospecific communications demonstrates a remarkable degree of auditory discrimination in a non-vocal species.

View Article and Find Full Text PDF

Maternal effects arise when a mother's phenotype or the environment she experiences influences the phenotype of her progeny. Most studies of adaptive maternal effects are a "snapshot" of a mother's lifetime offspring provisioning and do not generally consider the effects of earlier siblings on those produced later. Here we show that in soil mites, offspring provisioning strategies are dynamic, changing from an emphasis on egg number in young females to egg size in older females.

View Article and Find Full Text PDF