Evaluate safety and determine the recommended phase II dose (RP2D) of ensartinib (X-396), a potent anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI), and evaluate preliminary pharmacokinetics and antitumor activity in a first-in-human, phase I/II clinical trial primarily in patients with non-small cell lung cancer (NSCLC). In dose escalation, ensartinib was administered at doses of 25 to 250 mg once daily in patients with advanced solid tumors; in dose expansion, patients with advanced -positive NSCLC were administered 225 mg once daily. Patients who had received prior ALK TKI(s) and patients with brain metastases were eligible.
View Article and Find Full Text PDFSince the discovery of rapamycin, considerable progress has been made in unraveling the details of the mammalian target of rapamycin (mTOR) signaling network, including the upstream mechanisms that modulate mTOR signaling functions, and the roles of mTOR in the regulation of mRNA translation and other cell growth-related responses. mTOR is found in two different complexes within the cell, mTORC1 and mTORC2, but only mTORC1 is sensitive to inhibition by rapamycin. mTORC1 is a master controller of protein synthesis, integrating signals from growth factors within the context of the energy and nutritional conditions of the cell.
View Article and Find Full Text PDFHyperactivation of the PI3K/AKT/mTOR signaling pathway is common in cancer, and PI3K and mTOR act synergistically in promoting tumor growth, survival, and resistance to chemotherapy. Thus, combined targeting of PI3K and mTOR presents an opportunity for robust and synergistic anticancer efficacy. 17-Hydroxywortmannin (2a) analogues conjugated to rapamycin (3a) analogues via a prodrug linker are uniquely positioned for this approach.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) is centrally involved in growth, survival and metabolism. In cancer, mTOR is frequently hyperactivated and is a clinically validated target for drug development. Until recently, we have relied largely on the use of rapamycin to study mTOR function and its anticancer potential.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) is a central regulator of cell growth, metabolism, and angiogenesis and an emerging target in cancer research. High throughput screening (HTS) of our compound collection led to the identification of 3-(4-morpholin-4-yl-1-piperidin-4-yl-1H-pyrazolo[3,4-d]pyrimidin-6-yl)phenol (5a), a modestly potent and nonselective inhibitor of mTOR and phosphoinositide 3-kinase (PI3K). Optimization of compound 5a, employing an mTOR homology model based on an X-ray crystal structure of closely related PI3Kgamma led to the discovery of 6-(1H-indol-5-yl)-4-morpholin-4-yl-1-[1-(pyridin-3-ylmethyl)piperidin-4-yl]-1H-pyrazolo[3,4-d]pyrimidine (5u), a potent and selective mTOR inhibitor (mTOR IC(50) = 9 nM; PI3Kalpha IC(50) = 1962 nM).
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR), a central regulator of growth, survival, and metabolism, is a validated target for cancer therapy. Rapamycin and its analogues, allosteric inhibitors of mTOR, only partially inhibit one mTOR protein complex. ATP-competitive, global inhibitors of mTOR that have the potential for enhanced anticancer efficacy are described.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) is centrally involved in cell growth, metabolism, and angiogenesis. While showing clinical efficacy in a subset of tumors, rapamycin and rapalogs are specific and allosteric inhibitors of mTOR complex 1 (mTORC1), but they do not directly inhibit mTOR complex 2 (mTORC2), an emerging player in cancer. Here, we report chemical structure and biological characterization of three pyrazolopyrimidine ATP-competitive mTOR inhibitors, WAY-600, WYE-687, and WYE-354 (IC(50), 5-9 nmol/L), with significant selectivity over phosphatidylinositol 3-kinase (PI3K) isofoms (>100-fold).
View Article and Find Full Text PDFCancer Chemother Pharmacol
September 2009
Purpose: To compare TTI-237 (5-chloro-6-[2,6-difluoro-4-[3-(methylamino)propoxy]phenyl]-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-[1, 2, 4]triazolo[1,5-a]pyrimidin-7-amine butanedioate) with paclitaxel and vincristine in order to better understand the properties of this new anti-microtubule agent.
Methods: Tubulin polymerization and depolymerization were followed by turbidimetric assays. Effects of compounds on the binding of [(3)H]guanosine triphosphate ([(3)H]GTP) to tubulin were studied by competition binding assays.
The mammalian target of rapamycin (mTOR) inhibitor CCI-779 (temsirolimus) is a recently Food and Drug Administration-approved anticancer drug with efficacy in certain solid tumors and hematologic malignancies. In cell culture studies, CCI-779 at the commonly used nanomolar concentrations generally confers a modest and selective antiproliferative activity. Here, we report that, at clinically relevant low micromolar concentrations, CCI-779 completely suppressed proliferation of a broad panel of tumor cells.
View Article and Find Full Text PDF5-Chloro-6-[2,6-difluoro-4-[3-(methylamino)propoxy]phenyl]-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine butanedioate (TTI-237) is a microtubule-active compound of novel structure and function. Structurally, it is one of a class of compounds, triazolo[1,5a]pyrimidines, previously not known to bind to tubulin. Functionally, TTI-237 inhibited the binding of [(3)H]vinblastine to tubulin, but it caused a marked increase in turbidity development that more closely resembled the effect observed with docetaxel than that observed with vincristine.
View Article and Find Full Text PDFThe immunosuppressive drug rapamycin played a key role in the functional characterization of mammalian target of rapamycin (mTOR), an unusual protein kinase that coordinates growth factor and nutrient availability with cell growth and proliferation. Several rapamycin-related compounds are now in various stages of clinical development as anticancer agents. This article highlights recent advances in our understanding of the mTOR signaling pathway and the implications of these findings for the clinical application of mTOR inhibitors in cancer patients.
View Article and Find Full Text PDF