Major histocompatibility complex (MHC) class II genes are regulated at the transcriptional level by coordinate action of a limited number of transcription factors that include regulatory factor X (RFX), class II transcriptional activator (CIITA), nuclear factor Y (NF-Y), and cyclic AMP-response element binding protein (CREB). Here, the MHC class-II-specific transcription factors and CREB were expressed in insect cells with recombinant baculoviruses, isolated, and characterized by biochemical and biophysical methods. Analytical ultracentrifugation (AUC) has demonstrated that RFX is a heterotrimer.
View Article and Find Full Text PDFGene targeting allows for precise genomic engineering and has been used extensively to generate both loss-of-function and gain-of-function models in mice. Similar manipulation of the genome of somatic cell lines holds high value in basic and applied research, but has been hampered by low recombination frequencies and the subsequent labor-intensive analysis of a large number of cell clones. By combining gene targeting methods with fluorescence-activated cell sorting, gain-of-function cell lines were generated and identified based on a functional readout.
View Article and Find Full Text PDFHerpes simplex virus infections are the cause of significant morbidity, and currently used therapeutics are largely based on modified nucleoside analogs that inhibit viral DNA polymerase function. To target this disease in a new way, we have identified and optimized selective thiazolylphenyl-containing inhibitors of the herpes simplex virus (HSV) helicase-primase enzyme. The most potent compounds inhibited the helicase, the primase and the DNA-dependent ATPase activities of the enzyme with IC50 (50% inhibitory concentration) values less than 100 nM.
View Article and Find Full Text PDF