Publications by authors named "James J Coleman"

We report here on one-dimensional (1D) grating couplers based on hybrid silicon/LNOI platform for polarization-independent and high-efficient single-polarization coupling efficiencies. A low index oxide buffer layer was introduced in between the top silicon high index grating coupler and bottom LNOI waveguide. With optimal design of the buffer layer thicknesses, modal and index matches can be tuned for either single polarization or both TE/TM polarization coupling applications.

View Article and Find Full Text PDF

Metal-assisted chemical etching (MacEtch) is an emerging anisotropic chemical etching technique that has been used to fabricate high aspect ratio semiconductor micro- and nanostructures. Despite its advantages in unparalleled anisotropy, simplicity, versatility, and damage-free nature, the adaptation of MacEtch for silicon (Si)-based electronic device fabrication process is hindered by the use of a gold (Au)-based metal catalyst, as Au is a detrimental deep-level impurity in Si. In this report, for the first time, we demonstrate CMOS-compatible titanium nitride (TiN)-based MacEtch of Si by establishing a true vapor-phase (VP) MacEtch approach in order to overcome TiN-MacEtch-specific challenges.

View Article and Find Full Text PDF

Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching.

View Article and Find Full Text PDF

Optoelectronic devices have long benefited from structuring in multiple dimensions on microscopic length scales. However, preserving crystal epitaxy, a general necessity for good optoelectronic properties, while imparting a complex three-dimensional structure remains a significant challenge. Three-dimensional (3D) photonic crystals are one class of materials where epitaxy of 3D structures would enable new functionalities.

View Article and Find Full Text PDF

Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use.

View Article and Find Full Text PDF