The oxorhenium(V) dimer {MeReO(edt)}2 (1; where edt = 1,2-ethanedithiolate) catalyzes S atom transfer from thiiranes to triarylphosphines and triarylarsines. Despite the fact that phosphines are more nucleophilic than arsines, phosphines are less effective because they rapidly convert the dimer catalyst to the much less reactive catalyst [MeReO(edt)(PAr3)] (2). With AsAr3, which does not yield the monomer, the rate law is given by v = k[thiirane][1], independent of the arsine concentration.
View Article and Find Full Text PDFReinvestigation of the reaction between title reagents in aqueous acidic triflate and perchlorate media revealed an unusual difference: the reaction is strictly first-order with respect to the concentration of Fe(phen)3(2+) (phen = 1,10-phenanthroline) in the triflate medium but shows an additional, but we believe artifactual, higher-order term in the perchlorate medium. We postulate that the apparent orders with respect to [Fe(phen)3(2+)] in (H/Li)ClO4 do not indicate the actual chemical mechanism but, in whole or in part, the orders, particularly the higher-order component, reflect an interaction specific to Fe(phen)3(2+) or Fe(phen)3(3+) and ClO4(-) in solution. Data in (H/Li)O3SCF3 solutions indicate that, in the absence of added Fe(phen)3(3+), the first of the three sequential electron-transfer steps is rate controlling.
View Article and Find Full Text PDFComputational estimates have been made for the P=S and As=S bond strengths in triphenylphosphine sulfide and triphenylarsine sulfide, on the basis of G3 calculations for the methyl analogues and isodesmic-exchange reactions. Also, with the performance of the G3 method level for related compounds taken into consideration, the best estimates are 82 and 68 kcal/mol, respectively. While the value for triphenylarsine sulfide is within 2 kcal/mol of the single experimental estimate, that for triphenylphosphine sulfide is lower by 6 kcal/mol.
View Article and Find Full Text PDFKinetic evidence suggests the possibility of a dicationic intermediate in the title reaction. Thus the linkage isomerization reaction, PNC+ = PCN+, is described by the rate law, nu = 3/2k[PNC+]3/2, which can be interpreted by a chain mechanism with the propagation reaction PNC+ + P2+ --> P2+ + PCN+. Such propagation is unusual in that the intermediate regenerates itself in this single step rather than forming a different intermediate for a second propagation step.
View Article and Find Full Text PDFThe rate constants of para-/orthohydrogen (p-/o-H2) nuclear spin isomerization have been measured by means of 1H NMR in deuterated solvents at 298.2 K. The indicated reaction is catalyzed by paramagnetic complex ions giving rate constants that are proportional to the concentrations of the catalysts.
View Article and Find Full Text PDFA series of rhenium(V) complexes, [(X)(ReO)(dt)(PPh(3))] and [(o-SC(6)H(4)PPh(2))(ReO)(mtp)], were prepared to explore electronic effects on the C-S cleavage reaction that occurs upon reaction with PAr(3) at ambient temperature [where X = S(C(6)H(4)-p-Z) (Z = OMe, Me, H, F, Cl), OPh, Cl, and SC(2)H(5), and dt is the chelating dithiolate ligand derived from 2-(mercaptomethyl)thiophenol, 1,2-ethanedithiol, 1,3-propanedithiol, 1,3-butanedithiol, and 2,4-pentanedithiol]. The scope and selectivity of the C-S activation were examined. The C-S bond cleavage to form metallacyclic Re(V) complexes with a ReS core occurs only for the complexes with mtp and pdt frameworks and X = SAr and SC(2)H(5).
View Article and Find Full Text PDFThe reaction between vanadium(III) and hydrogen peroxide in aqueous acidic solutions was investigated. The rate law shows first-order dependences on both vanadium(III) and hydrogen peroxide concentrations, with a rate constant, defined in terms of -d[H(2)O(2)]/dt, of 2.06 +/- 0.
View Article and Find Full Text PDFThe new compound {(PhS)(2)ReO(mu-SPh)}(2), 1, was synthesized from Re(2)O(7) and PhSH and then used as the synthon for a number of hitherto unknown oxorhenium(V) compounds. Reactions between dithiols and 1 (2:1 ratio) afford {PhSReO(dt)}(2), where the dithiols, dtH(2), are 1,2-ethanedithiol (edtH(2)), 1,3-propanedithiol (pdtH(2)), 1,3-butanedithiol (pdtMeH(2)), 1,2-benzenedithiol (bdtH(2)), 2-(mercaptomethyl)thiophenol (mtpH(2)), and 2-mercaptoethyl sulfide (mesH(2)). Similar reactions carried out with a 3:1 ratio of dtH(2) to 1 afford [(ReO)(2)(dt)(3)], dt = edt, pdt.
View Article and Find Full Text PDFThe synthesis and characterization of a new oxorhenium(V) compound is reported; it is [MeReO(edt)(bpym)], 8, where edt = 1,2-ethanedithiolate and bpym = 2,2'-bipyrimidine. Compound 8 was characterized by NMR spectroscopy and single-crystal X-ray analysis. It exists as a six-coordinate Re(V) compound comparable to the previously known [MeReO(edt)(bpy)] and [MeReO(mtp)(bpy)].
View Article and Find Full Text PDFAlthough neither vanadium(V) ions nor hydrogen peroxide efficiently oxidize the title substrates, they do so in combination, with vanadium(V) as the catalyst in acidic aqueous acetonitrile. The kinetic data show that, of the two peroxovanadium species present, OV(O2)+ and OV(O2)2-, only the latter reacts at a detectable rate. This unanticipated result can be attributed to the weaker O-O and V-O bonds in the diperoxo complex.
View Article and Find Full Text PDFThe title reactions occur stepwise, the first and fastest being MeReO3 + Eu2+ --> Re(VI) + Eu3+ (k298 = 2.7 x 10(4) L mol(-1) s(-1)), followed by rapid reduction of Re(VI) by Eu2+ to MeReO2. The latter species is reduced by a third Eu2+ to Re(IV), a metastable species characterized by an intense charge transfer band, epsilon410 = 910 L mol(-1) cm(-1) at pH 1; the rate constant for its formation is 61.
View Article and Find Full Text PDFKinetic data have been obtained for three distinct types of reactions of phthalimide N-oxyl radicals (PINO(.)) and N-hydroxyphthalimide (NHPI) derivatives. The first is the self-decomposition of PINO(.
View Article and Find Full Text PDFCompounds that contain the anion [MeReO(edt)(SPh)](-) (3-) were synthesized with the countercations 2-picolinium (PicH+3-) and 2,6-lutidinium (LutH+3-), where edt is 1,2-ethanedithiolate. Both PicH+3- and MeReO(edt)(tetramethylthiourea) (4) were crystallographically characterized. The rhenium atom in each of these compounds exists in a five-coordinate distorted square pyramid.
View Article and Find Full Text PDFThe compound MeRe(S)(mtp)(PPh3), 2, where mtpH2 is 2-(mercaptomethyl)thiophenol, was used to catalyze the reaction between pyridine N-oxides, PyO, and triphenylphosphine. The rate law is -d[PyO]/dt=kc'[2].[PyO](1/2), with kc' at 25.
View Article and Find Full Text PDFThe phthalimide N-oxyl (PINO) radical was generated by the oxidation of N-hydroxyphthalimide (NHPI) with Pb(OAc)4 in acetic acid. The molar absorptivity of PINO* is 1.36 x 10(3) L mol(-1) cm(-1) at lambda(max) 382 nm.
View Article and Find Full Text PDFAn oxorhenium(V) dimer, [PMeReO(mtp)](2), D, where mtpH(2) is 2-(mercaptomethyl)thiophenol, catalyzes oxygen atom transfer reaction from methyl phenyl sulfoxide to triarylphosphines. Kinetic studies in benzene-d(6) at 23 degrees C indicate that the reaction takes place through the formation of an adduct between D and sulfoxide. The equilibrium constants, K(DL), for adduct formation were determined by spectrophotometric titration, and the values of K(DL) for MeS(O)C(6)H(4)-4-R were obtained as 14.
View Article and Find Full Text PDFExposure to visible light increases the rate of oxidation of chlorinated phenols by hydrogen peroxide in aqueous solution in either the presence or the absence of iron-based catalysts, which may be explained by the aqueous photoreactions of chloroquinone intermediates.
View Article and Find Full Text PDFFour new methyloxorhenium(V) compounds were synthesized with these tridentate chelating ligands: 2-mercaptoethyl sulfide (abbreviated HSSSH), 2-mercaptoethyl ether (HSOSH), thioldiglycolic acid (HOSOH), and 2-(salicylideneamino)benzoic acid (HONOH). Their reactions with MeReO(3) under suitable conditions led to these products: MeReO(SSS), 1, MeReO(SOS), 2, MeReO(OSO)(PAr(3)), 3, and MeReO(ONO)(PPh(3)), 4. These compounds were characterized spectroscopically and crystallographically.
View Article and Find Full Text PDFFour new methyloxorhenium(V) complexes were synthesized: MeReO(PA)(2) (1), MeReO(HQ)(2) (2), MeReO(MQ)(2) (3), and MeReO(diphenylphosphinobenzoate)(2) (4) (in which PAH = 2-picolinic acid, HQH = 8-hydroxyquinoline, and MQH = 8-mercaptoquinoline). Although only one geometric structure has been identified crystallographically for 1, 2, and 3, two isomers of 3 and 4 in solution were detected by NMR spectroscopy. These compounds catalyze the sulfoxidation of thioethers by pyridine N-oxides and sulfoxides.
View Article and Find Full Text PDFThe bis(2,6-diisopropylphenylimido)methylrhenium(VII) sulfide dimer, [CH(3)Re(NAr)(2)](2)(mu-S)(2) (1), reacts with a 1:1 amount of a phosphine or an alkyl isocyanide to yield a dimeric rhenium(VI) species, [CH(3)Re(NAr)(2)](2)(mu-S) (2), which has been structurally characterized. The two rhenium atoms in 2 are within bonding distance, 280 pm, more than 90 pm shorter than in 1. With excess L, 1 reacts to give a monomeric rhenium(V) complex, CH(3)Re(NAr)(2)L(2) (3A, L = PZ(3), Z = alkyl, aryl; 3B, L = isocyanide).
View Article and Find Full Text PDFThe kinetics of reaction between triarylphosphanes and two newly prepared dioxorhenium(VII) compounds has been evaluated. The compounds are MeRe(VII)(O)(2)("O,S") in which "O,S" represents an alkoxo, thiolato chelating ligand. With MeReO(3), ligands derived from 1-mercaptoethanol and 1-mercapto-2-propanol form MeRe(O)(2)(met), 2, and MeRe(O)(2)(m2p), 3.
View Article and Find Full Text PDFChelating dithiolate ligands--e.g., mtp from 2-(mercaptomethyl)thiophenol, edt from 1,2-ethanedithiol, and pdt from 1,3-propanedithiol--stabilize high-valent oxorhenium(V) against hydrolytic and oxidative decomposition.
View Article and Find Full Text PDF