Polymeric thermal switches that can reversibly tune and significantly enhance their thermal conductivities are desirable for diverse applications in electronics, aerospace, automotives, and medicine; however, they are rarely achieved. Here, we report a polymer-based thermal switch consisting of an end-linked star-shaped thermoset with two independent thermal conductivity tuning mechanisms-strain and temperature modulation-that rapidly, reversibly, and cyclically modulate thermal conductivity. The end-linked star-shaped thermoset exhibits a strain-modulated thermal conductivity enhancement up to 11.
View Article and Find Full Text PDFWithin multicellular living systems, cells coordinate their positions with spatiotemporal accuracy to form various structures, setting the clock to control developmental processes and trigger maturation. These arrangements can be regulated by tissue topology, biochemical cues, as well as mechanical perturbations. However, the fundamental rules of how local cell packing order is regulated in forming three-dimensional (3D) multicellular architectures remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
Although water is almost transparent to visible light, we demonstrate that the air-water interface interacts strongly with visible light via what we hypothesize as the photomolecular effect. In this effect, transverse-magnetic polarized photons cleave off water clusters from the air-water interface. We use 14 different experiments to demonstrate the existence of this effect and its dependence on the wavelength, incident angle, and polarization of visible light.
View Article and Find Full Text PDFStrain-induced crystallization (SIC) prevalently strengthens, toughens, and enables an elastocaloric effect in elastomers. However, the crystallinity induced by mechanical stretching in common elastomers (e.g.
View Article and Find Full Text PDFThe ubiquitous nature of atmospheric moisture makes it a significant water resource available at any geographical location. Atmospheric water harvesting (AWH) technology, which extracts moisture from the ambient air to generate clean water, is a promising strategy to realize decentralized water production. The high water uptake by salt-based sorbents makes them attractive for AWH, especially in arid environments.
View Article and Find Full Text PDFHarvesting waste heat with temperatures lower than 100 °C can improve the system efficiency and reduce greenhouse gas emissions, yet it has been a longstanding and challenging task. Electrochemical methods for harvesting low-grade heat have aroused research interest in recent years due to the relatively high effective temperature coefficient of the electrolytes (>1 mV K) compared with the thermopower of traditional thermoelectric devices. Compared with other electrochemical devices such as the temperature-variation based thermally regenerative electrochemical cycle and temperature-difference based thermogalvanic cells, the thermally regenerative electrochemically cycled flow battery (TREC-FB) has the advantages of providing a continuous power output, decoupling the heat source and heat sink, and recuperating heat, and compatible with stacking for scaling up.
View Article and Find Full Text PDF