Publications by authors named "James H Zavecz"

Human immunodeficiency virus-1 antiretroviral treatment is associated with an increased incidence of atherosclerosis. We hypothesized that antiretrovirals directly impair endothelial function after short-term exposure and that with chronic exposure, this dysfunction promotes a proliferative response, inducing neointimal hyperplasia, thus contributing to vascular lesion formation. To test this hypothesis, we treated mice with the nucleoside reverse transcriptase inhibitor azidothymidine (AZT), the protease inhibitor indinavir, or AZT + indinavir.

View Article and Find Full Text PDF

Marked hemodynamic changes occur in humans and experimental animals with cirrhotic liver disease. In the heart, basal contractility, responsiveness to beta-adrenoceptor activation, and excitation-contraction coupling (ECC) are negatively affected in models of cirrhosis and portal hypertension with portosystemic shunting (PVS), and comprise what has been called cirrhotic cardiomyopathy. These effects are accompanied by elevated circulating levels of bile acids.

View Article and Find Full Text PDF

HIV-associated cardiovascular diseases have been widely described, but clinical studies aimed at establishing cause-effect relationships between HIV-associated cardiovascular disease and either the HIV infection or antiretroviral therapy have been problematic. Endothelial dysfunction is a sensitive marker and early event in atherosclerosis, and many have suggested that protease inhibitors promote endothelial dysfunction indirectly by inducing elevations in circulating lipids. To determine whether nucleoside reverse transcriptase inhibitors and/or protease inhibitors induce endothelial dysfunction, and to test whether this effect is dependent upon drug-mediated alteration in plasma lipid concentrations, we treated male Sprague-Dawley rats with pharmacological doses of azidothymidine (AZT), indinavir, or AZT plus indinavir through their drinking water for 1 month and assessed endothelial function in aortic rings using an isometric force measurement.

View Article and Find Full Text PDF