Publications by authors named "James H Strauss"

The 9 A resolution cryo-electron microscopy map of Sindbis virus presented here provides structural information on the polypeptide topology of the E2 protein, on the interactions between the E1 and E2 glycoproteins in the formation of a heterodimer, on the difference in conformation of the two types of trimeric spikes, on the interaction between the transmembrane helices of the E1 and E2 proteins, and on the conformational changes that occur when fusing with a host cell. The positions of various markers on the E2 protein established the approximate topology of the E2 structure. The largest conformational differences between the icosahedral surface spikes at icosahedral 3-fold and quasi-3-fold positions are associated with the monomers closest to the 5-fold axes.

View Article and Find Full Text PDF

Dengue virus, a member of the Flaviviridae family, has a surface composed of 180 copies each of the envelope (E) glycoprotein and the membrane (M) protein. The crystal structure of an N-terminal fragment of E has been determined and compared with a previously described structure. The primary difference between these structures is a 10 degrees rotation about a hinge relating the fusion domain DII to domains DI and DIII.

View Article and Find Full Text PDF

Alphavirus nonstructural proteins are translated as a polyprotein that is ultimately cleaved into four mature proteins called nsP1, nsP2, nsP3, and nsP4 from their order in the polyprotein. The role of this nonstructural polyprotein, of cleavage intermediates, and of mature proteins in synthesis of Semliki Forest virus (SFV) RNA has been studied using mutants unable to cleave one or more of the sites in the nonstructural polyprotein or that had the arginine sense codon between nsP3 and nsP4 changed to an opal termination codon. The results were compared with those obtained for Sindbis virus (SINV), which has a naturally occurring opal codon between nsP2 and nsP3.

View Article and Find Full Text PDF

Improved technology for reconstructing cryo-electron microscopy (cryo-EM) images has now made it possible to determine secondary structural features of membrane proteins in enveloped viruses. The structure of mature dengue virus particles was determined to a resolution of 9.5 A by cryo-EM and image reconstruction techniques, establishing the secondary structural disposition of the 180 envelope (E) and 180 membrane (M) proteins in the lipid envelope.

View Article and Find Full Text PDF

Structures of prM-containing dengue and yellow fever virus particles were determined to 16 and 25 A resolution, respectively, by cryoelectron microscopy and image reconstruction techniques. The closely similar structures show 60 icosahedrally organized trimeric spikes on the particle surface. Each spike consists of three prM:E heterodimers, where E is an envelope glycoprotein and prM is the precursor to the membrane protein M.

View Article and Find Full Text PDF

We have previously shown that Sindbis virus RNA polymerase requires an N-terminal aromatic amino acid or histidine for wild-type or pseudo-wild-type function; mutant viruses with a nonaromatic amino acid at the N terminus of the polymerase, but which are otherwise wild type, are unable to produce progeny viruses and will not form a plaque at any temperature tested. We now show that such mutant polymerases can function to produce progeny virus sufficient to form plaques at both 30 and 40 degrees C upon addition of AU, AUA, or AUU to the 5' terminus of the genomic RNA or upon substitution of A for U as the third nucleotide of the genome. These results are consistent with the hypothesis that (i) 3'-UA-5' is required at the 3' terminus of the minus-strand RNA for initiation of plus-strand genomic RNA synthesis; (ii) in the wild-type virus this sequence is present in a secondary structure that can be opened by the wild-type polymerase but not by the mutant polymerase; (iii) the addition of AU, AUA, or AUU to the 5' end of the genomic RNA provides unpaired 3'-UA-5' at the 3' end of the minus strand that can be utilized by the mutant polymerase, and similarly, the effect of the U3A mutation is to destabilize the secondary structure, freeing 3'-terminal UA; and (iv) the N terminus of nsP4 may directly interact with the 3' terminus of the minus-strand RNA for the initiation of the plus-strand genomic RNA synthesis.

View Article and Find Full Text PDF

We present fine mapping of a cis-acting nucleotide sequence found in the 5' region of yellow fever virus genomic RNA that is required for RNA replication. There is evidence that this sequence interacts with a complementary sequence in the 3' region of the genome to cyclize the RNA. Replicons were constructed that had various deletions in the 5' region encoding the capsid protein and were tested for their ability to replicate.

View Article and Find Full Text PDF

Chimeric alphaviruses in which the 6K and glycoprotein E1 moieties of Sindbis virus are replaced with those of Ross River virus grow very poorly, but upon passage, adapted variants arise that grow >100 times better. We have sequenced the entire domain encoding the E2, 6K, and E1 proteins of a number of these adapted variants and found that most acquired two amino acid changes, which had cumulative effects. In three independent passage series, amino acid 380 of E2, which is in the transmembrane domain, was mutated from the original isoleucine to serine in two instances and to valine once.

View Article and Find Full Text PDF

Aura and Sindbis viruses are closely related alphaviruses. Unlike other alphaviruses, Aura virus efficiently encapsidates both genomic RNA (11.8 kb) and subgenomic RNA (4.

View Article and Find Full Text PDF

The first structure of a flavivirus has been determined by using a combination of cryoelectron microscopy and fitting of the known structure of glycoprotein E into the electron density map. The virus core, within a lipid bilayer, has a less-ordered structure than the external, icosahedral scaffold of 90 glycoprotein E dimers. The three E monomers per icosahedral asymmetric unit do not have quasiequivalent symmetric environments.

View Article and Find Full Text PDF