Publications by authors named "James H Soper"

Chaperones are central to the proteostasis network (PN) and safeguard the proteome from misfolding, aggregation, and proteotoxicity. We categorized the human chaperome of 332 genes into network communities using function, localization, interactome, and expression data sets. During human brain aging, expression of 32% of the chaperome, corresponding to ATP-dependent chaperone machines, is repressed, whereas 19.

View Article and Find Full Text PDF

A hallmark pathological feature of the Alzheimer's disease (AD) brain is the presence of senile plaques, which comprise amyloid β (Aβ) peptides that are derived from the amyloid precursor protein (APP). The plaque-containing AD brain is thought to be under oxidative stress, as evidenced by increased lipid oxidation products that include isoprostane-F2αIII (iPF2αIII). IPF2αIII can bind to and activate the thromboxane A2-prostanoid (TP) receptor, and TP receptor activation causes increased Aβ production through enhancement of APP mRNA stability.

View Article and Find Full Text PDF

Cyclopentane-1,3-diones are known to exhibit pK(a) values typically in the range of carboxylic acids. To explore the potential of the cyclopentane-1,3-dione unit as a carboxylic acid isostere, the physical-chemical properties of representative congeners were examined and compared with similar derivatives bearing carboxylic acid or tetrazole residues. These studies suggest that cyclopentane-1,3-diones may effectively substitute for the carboxylic acid functional group.

View Article and Find Full Text PDF

Abnormally accumulated α-synuclein (α-syn) is a pathological hallmark of Lewy body-related disorders such as Parkinson's disease (PD) and dementia with Lewy body disease (DLB). However, it is not well understood whether and how abnormal accumulation of α-syn leads to cognitive impairment or dementia in PD and DLB. Furthermore, it is not known whether targeted removal of α-syn pathology can reverse cognitive decline.

View Article and Find Full Text PDF

Parkinson's disease is the most common neurodegenerative movement disorder. α-Synuclein is a small synaptic protein that has been linked to familial Parkinson's disease (PD) and is also the primary component of Lewy bodies, the hallmark neuropathology found in the brain of sporadic and familial PD patients. The function of α-synuclein is currently unknown, although it has been implicated in the regulation of synaptic vesicle localization or fusion.

View Article and Find Full Text PDF

Aggregated alpha-synuclein (alpha-syn) fibrils form Lewy bodies (LBs), the signature lesions of Parkinson's disease (PD) and related synucleinopathies, but the pathogenesis and neurodegenerative effects of LBs remain enigmatic. Recent studies have shown that when overexpressed in Saccharomyces cerevisiae, alpha-syn localizes to plasma membranes and forms cytoplasmic accumulations similar to human alpha-syn inclusions. However, the exact nature, composition, temporal evolution, and underlying mechanisms of yeast alpha-syn accumulations and their relevance to human synucleinopathies are unknown.

View Article and Find Full Text PDF