The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight.
View Article and Find Full Text PDFCigarette smoke-induced protein aggregation damages the lung cells in emphysema and COPD; however, lung cancer cells continue to thrive, evolving to persist in the toxic environment. Here, we showed that upon the cigarette smoke condensate exposure, A549 lung cancer cells exhibit better survival and reduced level of protein aggregation when compared to non-cancerous Beas-2B and H-6053 cells. Our data suggests that upregulation of efflux pumps in cancer cells assists in reducing smoke toxicity.
View Article and Find Full Text PDFBackground: Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives.
View Article and Find Full Text PDFAbstractSpecialized pathogens are thought to maintain plant community diversity; however, most ecological studies treat pathogens as a black box. Here we develop a theoretical model to test how the impact of specialized pathogens changes when plant resistance genes (R-genes) mediate susceptibility. This work synthesizes two major hypotheses: the gene-for-gene model of pathogen resistance and the Janzen-Connell hypothesis of pathogen-mediated coexistence.
View Article and Find Full Text PDFGenes with opposing effects on fitness at different life stages are the mechanistic basis for evolutionary theories of aging and life history. Examples come from studies of mutations in model organisms, but there is little knowledge of genetic bases of life history tradeoffs in natural populations. Here, we test the hypothesis that alleles affecting oxygen sensing in Glanville fritillary butterflies have opposing effects on larval versus adult fitness-related traits.
View Article and Find Full Text PDFInsects manifest phenotypic plasticity in their development and behavior in response to plant defenses, via molecular mechanisms that produce tissue-specific changes. Phenotypic changes might vary between species that differ in their preferred hosts and these effects could extend beyond larval stages. To test this, we manipulated the diet of southern armyworm (SAW; ) and fall armyworm (FAW; ) using a tomato mutant for jasmonic acid plant defense pathway (), and wild-type plants, and then quantified gene expression of Troponin t () and flight muscle metabolism of the adult insects.
View Article and Find Full Text PDFVector-borne pathogens are known to alter the phenotypes of their primary hosts and vectors, with implications for disease transmission as well as ecology. Here we show that a plant virus, barley yellow dwarf virus, increases the surface temperature of infected host plants (by an average of 2 °C), while also significantly enhancing the thermal tolerance of its aphid vector Rhopalosiphum padi (by 8 °C). This enhanced thermal tolerance, which was associated with differential upregulation of three heat-shock protein genes, allowed aphids to occupy higher and warmer regions of infected host plants when displaced from cooler regions by competition with a larger aphid species, R.
View Article and Find Full Text PDFGlycans are multi-branched sugars that are displayed from lipids and proteins. Through their diverse polysaccharide structures they can potentiate a myriad of cellular signaling pathways involved in development, growth, immuno-communication and survival. Not surprisingly, disruption of glycan synthesis is fundamental to various human diseases; including cancer, where aberrant glycosylation drives malignancy.
View Article and Find Full Text PDFAdeno-associated viruses (AAVs) have been employed successfully as gene therapy vectors in treating various genetic diseases for almost two decades. However, transgene packaging is usually imperfect, and developing a rapid and accurate method for measuring the proportion of DNA encapsidation is an important step for improving the downstream process of large scale vector production. In this study, we used two-dimensional class averages and three-dimensional classes, intermediate outputs in the single particle cryo-electron microscopy (cryo-EM) image reconstruction pipeline, to determine the proportion of DNA-packaged and empty capsid populations.
View Article and Find Full Text PDFSeparating footprints of adaptation from demography is challenging. When selection has acted on a single locus with major effect, this issue can be alleviated through signatures left by selective sweeps. However, as adaptation is often driven by small allele frequency shifts at many loci, studies focusing on single genes are able to identify only a small portion of genomic variants responsible for adaptation.
View Article and Find Full Text PDFKey genes potentially involved in cacao disease resistance were identified by transcriptomic analysis of important cacao cultivars. Defense gene polymorphisms were identified which could contribute to pathogen recognition capacity. Cacao suffers significant annual losses to the water mold Phytophthora spp.
View Article and Find Full Text PDFWhen active tissues receive insufficient oxygen to meet metabolic demand, succinate accumulates and has two fundamental effects: it causes ischemia-reperfusion injury while also activating the hypoxia-inducible factor pathway (HIF). The Glanville fritillary butterfly () possesses a balanced polymorphism in , shown previously to affect HIF pathway activation and tracheal morphology and used here to experimentally test the hypothesis that variation in succinate dehydrogenase affects oxidative injury We stimulated butterflies to fly continuously in a respirometer (3 min duration), which typically caused episodes of exhaustion and recovery, suggesting a potential for cellular injury from hypoxia and reoxygenation in flight muscles. Indeed, flight muscle from butterflies flown on consecutive days had lipidome profiles similar to those of rested paraquat-injected butterflies, but distinct from those of rested untreated butterflies.
View Article and Find Full Text PDFEmergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world's worst agricultural pests.
View Article and Find Full Text PDFDiversity in insect pigmentation, encompassing a wide range of colors and spatial patterns, is among the most noticeable features distinguishing species, individuals, and body regions within individuals. In holometabolous species, a significant portion of such diversity can be attributed to the melanin synthesis genes, but this has not been formally assessed in more basal insect lineages. Here we provide a comprehensive analysis of how a set of melanin genes (ebony, black, aaNAT, yellow, and tan) contributes to the pigmentation pattern in a hemipteran, Oncopeltus fasciatus For all five genes, RNA interference depletion caused alteration of black patterning in a region-specific fashion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2015
Winged insects underwent an unparalleled evolutionary radiation, but mechanisms underlying the origin and diversification of wings in basal insects are sparsely known compared with more derived holometabolous insects. In the neopteran species Oncopeltus fasciatus, we manipulated wing specification genes and used RNA-seq to obtain both functional and genomic perspectives. Combined with previous studies, our results suggest the following key steps in wing origin and diversification.
View Article and Find Full Text PDFInbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants--suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability.
View Article and Find Full Text PDFScarab beetles exhibit an astonishing variety of rigid exo-skeletal outgrowths, known as "horns". These traits are often sexually dimorphic and vary dramatically across species in size, shape, location, and allometry with body size. In many species, the horn exhibits disproportionate growth resulting in an exaggerated allometric relationship with body size, as compared to other traits, such as wings, that grow proportionately with body size.
View Article and Find Full Text PDFMetabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies.
View Article and Find Full Text PDFBenner, Knecht, and Engel have replied to my critique of their interpretation of a Carboniferous trace fossil produced by an insect at the edge of water. Here I respond by pointing out that their reiterated scenario still requires mutually exclusive paths of motion and I show that their assertions of methodological shortcomings are tangential and lack merit. Overall, this discussion provides an opportunity to examine in greater detail competing hypothesis about behaviors and taxonomic identity of the trace maker, and relevance thereof to competing theories regarding early events in the evolution of pterygote insects.
View Article and Find Full Text PDFOxygen conductance to the tissues determines aerobic metabolic performance in most eukaryotes but has cost/benefit tradeoffs. Here we examine in lowland populations of a butterfly a genetic polymorphism affecting oxygen conductance via the hypoxia-inducible factor (HIF) pathway, which senses intracellular oxygen and controls the development of oxygen delivery networks. Genetically distinct clades of Glanville fritillary (Melitaea cinxia) across a continental scale maintain, at intermediate frequencies, alleles in a metabolic enzyme (succinate dehydrogenase, SDH) that regulates HIF-1α.
View Article and Find Full Text PDFUnderstanding the molecular mechanisms underlying insect compensatory responses to plant defenses could lead to improved plant resistance to herbivores. The Mp708 inbred line of maize produces the maize insect resistant 1-cysteine protease (Mir1-CP) toxin. Reduced feeding and growth of fall armyworm larvae fed on Mp708 was previously linked to impairment of nutrient utilization and degradation of the midgut (MG) peritrophic matrix (PM) by Mir1-CP.
View Article and Find Full Text PDFA recent description and analysis of an imprint fossil from the Carboniferous concluded that it was made by a mayfly landing in sediment at the edge of water. Here, I reanalyze that trace fossil and supply experimental evidence regarding wing traces and behavior. The thorax of the trace maker lacked structures characteristic of mayflies, but closely matches a modern neopteran insect family (Taeniopterygidae, Plecoptera) little changed from Early Permian fossils.
View Article and Find Full Text PDFDo animals know at a physiological level how much they weigh, and, if so, do they make homeostatic adjustments in response to changes in body weight? Skeletal muscle is a likely tissue for such plasticity, as weight-bearing muscles receive mechanical feedback regarding body weight and consume ATP in order to generate forces sufficient to counteract gravity. Using rats, we examined how variation in body weight affected alternative splicing of fast skeletal muscle troponin T (Tnnt3), a component of the thin filament that regulates the actin-myosin interaction during contraction and modulates force output. In response to normal growth and experimental body weight increases, alternative splicing of Tnnt3 in rat gastrocnemius muscle was adjusted in a quantitative fashion.
View Article and Find Full Text PDF