Knowledge of interspecific and spatiotemporal variation in demography-environment relationships is key for understanding the population dynamics of sympatric species and developing multispecies conservation strategies. We used hierarchical random-effects models to examine interspecific and spatial variation in annual productivity in six migratory ducks (i.e.
View Article and Find Full Text PDFClimate and land use change are two of the primary threats to global biodiversity; however, each species within a community may respond differently to these facets of global change. Although it is typically assumed that species use the habitat that is advantageous for survival and reproduction, anthropogenic changes to the environment can create ecological traps, making it critical to assess both habitat selection (e.g.
View Article and Find Full Text PDFClimate change is altering global temperature and precipitation regimes, and the ability of species to respond to these changes could have serious implications for population dynamics. Flexible species may adjust breeding dates in response to advances in spring phenology. Furthermore, in migratory bird species, conditions experienced during the non-breeding season may have cross-seasonal effects during the subsequent breeding season.
View Article and Find Full Text PDFKnowledge of land-use patterns that could affect animal population resiliency or vulnerability to environmental threats such as climate change is essential, yet the interactive effects of land use and climate on demography across space and time can be difficult to study. This is particularly true for migratory species, which rely on different landscapes throughout the year. Unlike most North American migratory waterfowl, populations of northern pintails (Anas acuta; hereafter pintails) have not recovered since the 1980s despite extended periods of abundant flooded wetlands (i.
View Article and Find Full Text PDFWe used publically available data on duck breeding distribution and recently compiled geospatial data on upland habitat and environmental conditions to develop a spatially explicit model of breeding duck populations across the entire Prairie Pothole Region (PPR). Our spatial population models were able to identify key areas for duck conservation across the PPR and predict between 62.1-79.
View Article and Find Full Text PDFNeonicotinoids, broad-spectrum systemic insecticides, are the fastest growing class of insecticides worldwide and are now registered for use on hundreds of field crops in over 120 different countries. The environmental profile of this class of pesticides indicate that they are persistent, have high leaching and runoff potential, and are highly toxic to a wide range of invertebrates. Therefore, neonicotinoids represent a significant risk to surface waters and the diverse aquatic and terrestrial fauna that these ecosystems support.
View Article and Find Full Text PDFIn accordance with the differential allocation hypothesis, females are expected to increase their reproductive investment when mated to high-quality males. In waterfowl, reproductive, investment increased when captive female mallards (Anas platyrhynchos) were mated to more attractive males, but information for wild ducks is lacking. Studies of waterfowl mating systems have focused primarily on the importance of plumage coloration of males and female mate choice, whereas investigations of reproductive ecology examine female attributes and virtually ignore the role of males in investment decisions.
View Article and Find Full Text PDF