Publications by authors named "James Gurnon"

The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus.

View Article and Find Full Text PDF

Chloroviruses (family Phycodnaviridae) are large DNA viruses known to infect certain eukaryotic green algae and have not been previously shown to infect humans or to be part of the human virome. We unexpectedly found sequences homologous to the chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in a metagenomic analysis of DNA extracted from human oropharyngeal samples. These samples were obtained by throat swabs of adults without a psychiatric disorder or serious physical illness who were participating in a study that included measures of cognitive functioning.

View Article and Find Full Text PDF

Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of the genus Chlorovirus (family Phycodnaviridae) that infects the unicellular, eukaryotic green alga Chlorella variabilis NC64A. The 331-kb PBCV-1 genome contains 416 major open reading frames. A mRNA-seq approach was used to analyze PBCV-1 transcriptomes at 6 progressive times during the first hour of infection.

View Article and Find Full Text PDF

The PBCV-1/Chlorella variabilis NC64A system is a model for studies on interactions between viruses and algae. Here we present the first global analyses of algal host transcripts during the early stages of infection, prior to virus replication. During the course of the experiment stretching over 1 hour, about a third of the host genes displayed significant changes in normalized mRNA abundance that either increased or decreased compared to uninfected levels.

View Article and Find Full Text PDF

Most chloroviruses encode small K(+) channels, which are functional in electrophysiological assays. The experimental finding that initial steps in viral infection exhibit the same sensitivity to channel inhibitors as the viral K(+) channels has led to the hypothesis that the channels are structural proteins located in the internal membrane of the virus particles. This hypothesis was questioned recently because proteomic studies failed to detect the channel protein in virions of the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1).

View Article and Find Full Text PDF

The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm.

View Article and Find Full Text PDF

With growing industrial interest in algae plus their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. We examined a model algal host-virus system, Chlorella variabilis NC64A and virus, PBCV-1. C.

View Article and Find Full Text PDF

Background: Giant viruses in the genus Chlorovirus (family Phycodnaviridae) infect eukaryotic green microalgae. The prototype member of the genus, Paramecium bursaria chlorella virus 1, was sequenced more than 15 years ago, and to date there are only 6 fully sequenced chloroviruses in public databases. Presented here are the draft genome sequences of 35 additional chloroviruses (287 - 348 Kb/319 - 381 predicted protein encoding genes) collected across the globe; they infect one of three different green algal species.

View Article and Find Full Text PDF

The 331-kbp chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) genome was resequenced and annotated to correct errors in the original 15-year-old sequence; 40 codons was considered the minimum protein size of an open reading frame. PBCV-1 has 416 predicted protein-encoding sequences and 11 tRNAs. A proteome analysis was also conducted on highly purified PBCV-1 virions using two mass spectrometry-based protocols.

View Article and Find Full Text PDF

Background: Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced.

View Article and Find Full Text PDF

Paramecium bursaria chlorella virus 1 (PBCV-1), a large DNA virus that infects green algae, encodes a histone H3 lysine 27-specific methyltransferase that functions in global transcriptional silencing of the host. PBCV-1 has another gene a654l that encodes a protein with sequence similarity to the GCN5 family histone acetyltransferases. In this study, we report a 1.

View Article and Find Full Text PDF

Chlorella viruses are a source of interesting membrane transport proteins. Here we examine a putative K(+) transporter encoded by virus FR483 and related chlorella viruses. The protein shares sequence and structural features with HAK/KUP/KT-like K(+) transporters from plants, bacteria and fungi.

View Article and Find Full Text PDF

Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias.

View Article and Find Full Text PDF

Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1 (ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mimiviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in the synthesis and glycosylation of their structural proteins.

View Article and Find Full Text PDF

The Phycodnaviridae family of viruses is diverse genetically but similar morphologically. These viruses infect eukaryotic algal hosts from both fresh and marine waters, and are an important component of aqueous environments. They play important roles in the dynamics of algal blooms, nutrient cycling, algal community structure, and possibly gene transfer between organisms.

View Article and Find Full Text PDF

In contrast to all other viruses that use the host machinery located in the endoplasmic reticulum and Golgi to glycosylate their glycoproteins, the large dsDNA-containing chlorella viruses encode most, if not all, of the components to glycosylate their major capsid proteins. Furthermore, all experimental results indicate that glycosylation occurs independent of the endoplasmic reticulum and Golgi.

View Article and Find Full Text PDF

Viruses recruit host proteins to secure viral genome maintenance and replication. However, whether they modify host histones directly to interfere with chromatin-based transcription is unknown. Here we report that Paramecium bursaria chlorella virus 1 (PBCV-1) encodes a functional SET domain histone Lys methyltransferase (HKMTase) termed vSET, which is linked to rapid inhibition of host transcription after viral infection.

View Article and Find Full Text PDF

Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions.

View Article and Find Full Text PDF

Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+-binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

A virus PBCV-1, which infects certain fresh water algae and has been shown by transmission and cryo-electron microscopy to exist as a triskaidecahedron, was imaged using atomic force microscopy (AFM). From AFM the particles have diameters of about 190nm and the overall structure is in all important respects consistent with existing models. The surface lattice of the virion is composed of trimeric capsid proteins distributed according to p3 symmetry to create a honeycomb arrangement of raised edges forming quasi-hexagonal cells.

View Article and Find Full Text PDF

Sequence analysis of the 330-kb double-stranded DNA genome of Paramecium bursaria chlorella virus-1 revealed an open reading frame A674R that encodes a protein with up to 53% amino acid identity to a recently discovered new class of thymidylate synthases, called ThyX. Unlike the traditional thymidylate synthase, ThyA, that uses methylenetetrahydrofolate (CH(2)H(4)folate) as both a source of the methylene group and the reductant, CH(2)H(4)folate only supplies the methylene group in ThyX-catalyzed reactions. Furthermore, ThyX only catalyzes thymidylate (dTMP) formation in the presence of reduced pyridine nucleotides and oxidized FAD.

View Article and Find Full Text PDF

The chlorella virus PBCV-1 encodes a 94-amino acid protein named Kcv that produces a K+-selective and slightly voltage-sensitive conductance when expressed in heterologous systems. As reported herein, (i) Northern analysis of kcv expression in PBCV-1-infected cells revealed a complicated pattern suggesting that the gene might be transcribed as a di- or tri-cistronic mRNA both at early and late times after virus infection. (ii) The protein kinase inhibitors H-89, A3, and staurosporine inhibited PBCV-1 Kcv activity in Xenopus oocytes, suggesting that Kcv activity might be controlled by phosphorylation or dephosphorylation.

View Article and Find Full Text PDF

Sequence analysis of the 330-kb genome of chlorella virus PBCV-1 revealed an open reading frame, A464R, which encodes a protein with 30-35% amino acid identity to ribonuclease III (RNase III) from many bacteria. The a464r gene was cloned and the protein was expressed in Escherichia coli using the chitin-binding intein system. The recombinant PBCV-1 RNase III cleaves model dsRNA substrates, in a Mg(2+)-dependent manner, into a defined set of products.

View Article and Find Full Text PDF

At least three structural proteins in Paramecium bursaria Chlorella virus (PBCV-1) are glycosylated, including the major capsid protein Vp54. However, unlike other glycoprotein-containing viruses that use host-encoded enzymes in the endoplasmic reticulum-Golgi to glycosylate their proteins, PBCV-1 encodes at least many, if not all, of the glycosyltransferases used to glycosylate its structural proteins. As described here, PBCV-1 also encodes two open reading frames that resemble bacterial and mammalian enzymes involved in de novo GDP-L-fucose biosynthesis.

View Article and Find Full Text PDF