Sensing and filtering applications often require Fabry-Perot (FP) etalons with an Interferometer Transfer Function (ITF) having high visibility, narrow Full Width at Half Maximum (FWHM), and high sensitivity. For the ITF to have these characteristics, the illumination beam must be matched to the modes of the FP cavity. This is challenging when a small illumination element size is needed, as typical focused beams are not matched to the FP cavity modes.
View Article and Find Full Text PDFThe spatially resolved interrogation of a Fabry-Perot ultrasound sensor using a laser beam focused through a multimode fiber is demonstrated. To scan the beam across the sensor as required to read it out, optical wavefront shaping was employed to compensate for the scrambling of light in the fiber. By providing a means to map ultrasound through inexpensive, lightweight fibers, this could lead to new ultrasonic and photoacoustic imaging systems, such as endoscopes and flexible handheld probes.
View Article and Find Full Text PDFPlano-concave optical microresonators (PCMRs) are optical microcavities formed of one planar and one concave mirror separated by a spacer. PCMRs illuminated by Gaussian laser beams are used as sensors and filters in fields including quantum electrodynamics, temperature sensing, and photoacoustic imaging. To predict characteristics such as the sensitivity of PCMRs, a model of Gaussian beam propagation through PCMRs based on the ABCD matrix method was developed.
View Article and Find Full Text PDFA numerical model of Gaussian beam propagation in planar Fabry-Perot (FP) etalons is presented. The model is based on the ABCD transfer matrix method. This method is easy to use and interpret, and readily connects models of lenses, mirrors, fibres and other optics to aid simulating complex multi-component etalon systems.
View Article and Find Full Text PDFWe present a model that calculates optical fields reflected and transmitted by a Fabry-Perot (FP) etalon composed of interfaces with non-planar surface topography. The model uses the Rayleigh-Rice theory, which predicts the fields reflected and transmitted by a single interface, to account for the non-planar surface topography of each interface. The Rayleigh-Rice theory is evaluated iteratively to account for all round trips that light can take within the FP etalon.
View Article and Find Full Text PDFFabry-Perot (FP) etalons are used as filters and sensors in a range of optical systems. The reflected and transmitted fields associated with an FP etalon have traditionally been predicted by the Airy function, which assumes a plane wave illumination. FP etalons are, however, often illuminated by non-collimated beams, rendering the Airy function invalid.
View Article and Find Full Text PDFFabry-Perot (FP) etalons, composed of two parallel mirrors, are used widely as optical filters and sensors. In certain applications, however, such as when FP etalons with polymer cavities are used to detect ultrasound, the mirrors may not be perfectly parallel due to manufacturing limitations. As little is known about how the mirrors being non-parallel impacts upon FP etalon performance, it is challenging to optimize the design of such devices.
View Article and Find Full Text PDFFabry-Pérot (FP) etalons are used as filters and sensors in a range of optical systems. Often FP etalons are illuminated by collimated laser beams, in which case the transmitted and reflected light fields can be calculated analytically using well established models. However, FP etalons are sometimes illuminated by more complex beams such as focussed Gaussian beams, which may also be aberrated.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2019
Planar glass-etalon Fabry-Pérot (FP) optical ultrasound sensors offer an alternative to piezoelectric sensors for the measurements of high-intensity focused ultrasound (HIFU) fields and other metrological applications. In this work, a model of the frequency-dependent directional response of the FP sensor was developed using the global matrix method, treating the sensor as a multilayered elastic structure. The model was validated against the experimentally measured directional response of an air-backed cover-slip FP sensor with well-known material properties.
View Article and Find Full Text PDFBiomed Opt Express
September 2018
A Fabry-Perot ultrasound sensor with nonhygroscopic dielectric mirrors made out of TaO and SiO for use in photoacoustic tomography is described. The sensor offers flat frequency response up to 36 MHz, low noise-equivalent pressure (70 Pa), and near-omnidirectional response up to 20 MHz as well as optical transparency for near-infrared illumination. A numerical model was developed to predict its frequency response, and the results were validated experimentally.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2017
A simple method for measuring the directivity of an ultrasound receiver is described. The method makes use of a custom-designed laser ultrasound source which generates a large diameter (>1 cm) broadband monopolar plane wave with a continuous frequency content extending from to . The plane wave is highly uniform in amplitude (±5% over >8 mm) and phase (equivalent to at 80 MHz over ).
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2017
Measurement of high acoustic pressures is necessary in order to fully characterize clinical high-intensity focused ultrasound (HIFU) fields, and for accurate validation of computational models of ultrasound propagation. However, many existing measurement devices are unable to withstand the extreme pressures generated in these fields, and those that can often exhibit low sensitivity. Here, a planar Fabry-Pérot interferometer with hard dielectric mirrors and spacer was designed, fabricated, and characterized, and its suitability for measurement of nonlinear focused ultrasound fields was investigated.
View Article and Find Full Text PDFA novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation.
View Article and Find Full Text PDFLymph nodes play a central role in metastatic cancer spread and are a key clinical assessment target. Abnormal node vascularization, morphology, and size may be indicative of disease but can be difficult to visualize with sufficient accuracy using existing clinical imaging modalities. To explore the potential utility of photoacoustic imaging for the assessment of lymph nodes, images of ex vivo samples were obtained at multiple wavelengths using a high-resolution three-dimensional photoacoustic scanner.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2013
A novel method is presented for accurately reconstructing a spatially resolved map of diffuse light flux on a surface using images of the surface and a model of the imaging system. This is achieved by applying a model-based reconstruction algorithm with an existing forward model of light propagation through free space that accounts for the effects of perspective, focus, and imaging geometry. It is shown that flux can be mapped reliably and quantitatively accurately with very low error, <3% with modest signal-to-noise ratio.
View Article and Find Full Text PDFKnowledge of the surface geometry of an imaging subject is important in many applications. This information can be obtained via a number of different techniques, including time of flight imaging, photogrammetry, and fringe projection profilometry. Existing systems may have restrictions on instrument geometry, require expensive optics, or require moving parts in order to image the full surface of the subject.
View Article and Find Full Text PDFA multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated.
View Article and Find Full Text PDFBioluminescence Tomography attempts to quantify 3-dimensional luminophore distributions from surface measurements of the light distribution. The reconstruction problem is typically severely under-determined due to the number and location of measurements, but in certain cases the molecules or cells of interest form localised clusters, resulting in a distribution of luminophores that is spatially sparse. A Conjugate Gradient-based reconstruction algorithm using Compressive Sensing was designed to take advantage of this sparsity, using a multistage sparsity reduction approach to remove the need to choose sparsity weighting a priori.
View Article and Find Full Text PDF