Neuronal anatomy is central to the organization and function of brain cell types. However, anatomical variability within apparently homogeneous populations of cells can obscure such insights. Here, we report large-scale automation of neuronal morphology reconstruction and analysis on a dataset of 813 inhibitory neurons characterized using the Patch-seq method, which enables measurement of multiple properties from individual neurons, including local morphology and transcriptional signature.
View Article and Find Full Text PDFThe precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated.
View Article and Find Full Text PDF