Publications by authors named "James Goldman"

Autism spectrum disorder (ASD) represents a complex of neurological and developmental disabilities characterized by clinical and genetic heterogeneity. While the causes of ASD are still unknown, many ASD risk factors are found to converge on intracellular quality control mechanisms that are essential for cellular homeostasis, including the autophagy-lysosomal degradation pathway. Studies have reported impaired autophagy in ASD human brain and ASD-like synapse pathology and behaviors in mouse models of brain autophagy deficiency, highlighting an essential role for defective autophagy in ASD pathogenesis.

View Article and Find Full Text PDF

The mechanisms underlying the selective regional vulnerability to neurodegeneration in Huntington's disease (HD) have not been fully defined. To explore the role of astrocytes in this phenomenon, we used single-nucleus and bulk RNAseq, lipidomics, HTT gene CAG repeat-length measurements, and multiplexed immunofluorescence on HD and control post-mortem brains. We identified genes that correlated with CAG repeat length, which were enriched in astrocyte genes, and lipidomic signatures that implicated poly-unsaturated fatty acids in sensitizing neurons to cell death.

View Article and Find Full Text PDF

Cytomegalic neurons, characterized by increased size and a hyperactive mechanistic target of rapamycin complex 1 (mTORC1), are pathognomonic for tuberous sclerosis complex (TSC). To model these neurons, we recently generated a murine Tsc1 conditional knockout model in which Tsc1 deletion in late embryonic radial glia results in neuronal hypertrophy of a subset of isocortical pyramidal neurons. In the current study, we compared the cellular pathology of these cytomegalic neurons to those of the enlarged neurons in human cortical tubers.

View Article and Find Full Text PDF

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD.

View Article and Find Full Text PDF

In the mammalian isocortex, CD44, a cell surface receptor for extracellular matrix molecules, is present in pial-based and fibrous astrocytes of white matter but not in protoplasmic astrocytes. In the hominid isocortex, CD44+ astrocytes comprise the subpial "interlaminar" astrocytes, sending long processes into the cortex. The hippocampus also contains similar astrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • - Somatic mosaicism can lead to neurological disorders, like developmental brain malformations and epilepsy, and is typically thought to happen due to genetic changes after fertilization during fetal development.
  • - This research presents a new idea that some brain mosaicism, specifically in patients with focal epilepsy and extra copies of chromosome 1q, could arise from genetic errors during the formation of reproductive cells.
  • - Analysis revealed that these chromosome 1q gains were present only in the brain tissue of patients and not in their blood or buccal cells, particularly affecting astrocytes, which showed unique gene expressions and inclusions linked to epilepsy.
View Article and Find Full Text PDF

Huntington disease (HD) is an incurable neurodegenerative disease characterized by neuronal loss and astrogliosis. One hallmark of HD is the selective neuronal vulnerability of striatal medium spiny neurons. To date, the underlying mechanisms of this selective vulnerability have not been fully defined.

View Article and Find Full Text PDF

Oligodendrocytes are specialized cells that insulate and support axons with their myelin membrane, allowing proper brain function. Here, we identify lamin A/C (LMNA/C) as essential for transcriptional and functional stability of myelinating oligodendrocytes. We show that LMNA/C levels increase with differentiation of progenitors and that loss of Lmna in differentiated oligodendrocytes profoundly alters their chromatin accessibility and transcriptional signature.

View Article and Find Full Text PDF

The pathological involvement of the central nervous system in SARS-CoV2 (COVID-19) patients is established. The burden of pathology is most pronounced in the brain stem including the medulla oblongata. Hypoxic/ischemic damage is the most frequent neuropathologic abnormality.

View Article and Find Full Text PDF

During inflammatory, demyelinating diseases such as multiple sclerosis (MS), inflammation and axonal damage are prevalent early in the course. Axonal damage includes swelling, defects in transport, and failure to clear damaged intracellular proteins, all of which affect recovery and compromise neuronal integrity. The clearance of damaged cell components is important to maintain normal turnover and restore homeostasis.

View Article and Find Full Text PDF

Background: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the gene.

View Article and Find Full Text PDF

The complexity of affected brain regions and cell types is a challenge for Huntington's disease (HD) treatment. Here we use single nucleus RNA sequencing to investigate molecular pathology in the cortex and striatum from R6/2 mice and human HD post-mortem tissue. We identify cell type-specific and -agnostic signatures suggesting oligodendrocytes (OLs) and oligodendrocyte precursors (OPCs) are arrested in intermediate maturation states.

View Article and Find Full Text PDF

The brain of a 58-year-old woman was included as a civilian control in an ongoing autopsy study of military traumatic brain injury (TBI). The woman died due to a polysubstance drug overdose, with Coronavirus Disease 2019 (COVID-19) serving as a contributing factor. Immunohistochemical stains for β-amyloid (Aβ), routinely performed for the TBI study, revealed numerous, unusual neocortical Aβ deposits.

View Article and Find Full Text PDF

Although macroautophagy deficits are implicated across adult-onset neurodegenerative diseases, we understand little about how the discrete, highly evolved cell types of the central nervous system use macroautophagy to maintain homeostasis. One such cell type is the oligodendrocyte, whose myelin sheaths are central for the reliable conduction of action potentials. Using an integrated approach of mouse genetics, live cell imaging, electron microscopy, and biochemistry, we show that mature oligodendrocytes require macroautophagy to degrade cell autonomously their myelin by consolidating cytosolic and transmembrane myelin proteins into an amphisome intermediate prior to degradation.

View Article and Find Full Text PDF

Coronavirus disease 2019 (Covid-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is primarily regarded as a respiratory disease; however, multisystemic involvement accompanied by a variety of clinical manifestations, including neurological symptoms, are commonly observed. There is, however, little evidence supporting SARS-CoV-2 infection of central nervous system cells, and neurological symptoms for the most part appear to be due to damage mediated by hypoxic/ischemic and/or inflammatory insults. In this chapter, we report evidence on candidate neuropathological mechanisms underlying neurological manifestations in Covid-19, suggesting that while there is mostly evidence against SARS-CoV-2 entry into brain parenchymal cells as a mechanism that may trigger Parkinson's disease and parkinsonism, that there are multiple means by which the virus may cause neurological symptoms.

View Article and Find Full Text PDF

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability.

View Article and Find Full Text PDF

Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures.

View Article and Find Full Text PDF

Over 100 years ago, von Hösslein and Alzheimer described enlarged and multinucleated astrocytes in the brains of patients with Wilson disease. These odd astrocytes, now well known to neuropathologists, are present in a large variety of neurological disorders, and yet the mechanisms underlying their generation and their functional attributes are still not well understood. They undergo abnormal mitoses and fail to accomplish cytokinesis, resulting in multinucleation.

View Article and Find Full Text PDF

Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia.

View Article and Find Full Text PDF

SARS-CoV-2 infects less than 1% of cells in the human body, yet it can cause severe damage in a variety of organs. Thus, deciphering the non-cell-autonomous effects of SARS-CoV-2 infection is imperative for understanding the cellular and molecular disruption it elicits. Neurological and cognitive defects are among the least understood symptoms of COVID-19 patients, with olfactory dysfunction being their most common sensory deficit.

View Article and Find Full Text PDF

Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAP;Gfap) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAP;Gfap versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD.

View Article and Find Full Text PDF

Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is associated with onset of neurological and psychiatric symptoms during and after the acute phase of illness . Acute SARS-CoV-2 disease (COVID-19) presents with deficits of memory, attention, movement coordination, and mood. The mechanisms of these central nervous system symptoms remain largely unknown.

View Article and Find Full Text PDF

COVID-19 patients commonly present with neurological signs of central nervous system (CNS) and/or peripheral nervous system dysfunction. However, which neural cells are permissive to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been controversial. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively permissive to SARS-CoV-2 infection both and upon transplantation , and that SARS-CoV-2 infection triggers a DA neuron inflammatory and cellular senescence response.

View Article and Find Full Text PDF

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity.

View Article and Find Full Text PDF