With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a subset of a chemical library, iteratively synchronized with a ligand-based prediction of the remaining docking scores. This method results in hundreds- to thousands-fold virtual hit enrichment (without significant loss of potential drug candidates) and hence enables the screening of billion molecule-sized chemical libraries without using extraordinary computational resources.
View Article and Find Full Text PDFRecent explosive growth of 'make-on-demand' chemical libraries brought unprecedented opportunities but also significant challenges to the field of computer-aided drug discovery. To address this expansion of the accessible chemical universe, molecular docking needs to accurately rank billions of chemical structures, calling for the development of automated hit-selecting protocols to minimize human intervention and error. Herein, we report the development of an artificial intelligence-driven virtual screening pipeline that utilizes Deep Docking with Autodock GPU, Glide SP, FRED, ICM and QuickVina2 programs to screen 40 billion molecules against SARS-CoV-2 main protease (Mpro).
View Article and Find Full Text PDFSummary: Deep learning (DL) can significantly accelerate virtual screening of ultra-large chemical libraries, enabling the evaluation of billions of compounds at a fraction of the computational cost and time required by conventional docking. Here, we introduce DD-GUI, the graphical user interface for such DL approach we have previously developed, termed Deep Docking (DD). The DD-GUI allows for quick setups of large-scale virtual screens in an intuitive way, and provides convenient tools to track the progress and analyze the outcomes of a drug discovery project.
View Article and Find Full Text PDF