Publications by authors named "James Gimzewski"

Interference reflection microscopy (IRM) is a powerful, label-free technique to visualize the surface structure of biospecimens. However, stray light outside a focal plane obscures the surface fine structures beyond the diffraction limit ( ≈ 200 nm). Here, we developed an advanced interferometry approach to visualize the surface fine structure of complex biospecimens, ranging from protein assemblies to single cells.

View Article and Find Full Text PDF

Nanowire Networks (NWNs) belong to an emerging class of neuromorphic systems that exploit the unique physical properties of nanostructured materials. In addition to their neural network-like physical structure, NWNs also exhibit resistive memory switching in response to electrical inputs due to synapse-like changes in conductance at nanowire-nanowire cross-point junctions. Previous studies have demonstrated how the neuromorphic dynamics generated by NWNs can be harnessed for temporal learning tasks.

View Article and Find Full Text PDF

Open source analytical software for the analysis of electrophysiological cardiomyocyte data offers a variety of new functionalities to complement closed-source, proprietary tools. Here, we present the Cardio PyMEA application, a free, modifiable, and open source program for the analysis of microelectrode array (MEA) data obtained from cardiomyocyte cultures. Major software capabilities include: beat detection; pacemaker origin estimation; beat amplitude and interval; local activation time, upstroke velocity, and conduction velocity; analysis of cardiomyocyte property-distance relationships; and robust power law analysis of pacemaker spatiotemporal instability.

View Article and Find Full Text PDF

Power laws are of interest to several scientific disciplines because they can provide important information about the underlying dynamics (e.g. scale invariance and self-similarity) of a given system.

View Article and Find Full Text PDF

The study of physical and mechanical features of cancer cells, or cancer cell mechanobiology, is a new frontier in cancer research. Such studies may enhance our understanding of the disease process, especially mechanisms associated with cancer cell invasion and metastasis, and may help the effort of developing diagnostic biomarkers and therapeutic drug targets. Cancer cell mechanobiological changes are associated with the complex interplay of activation/inactivation of multiple signaling pathways, which can occur at both the genetic and epigenetic levels, and the interactions with the cancer microenvironment.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells exhibit changes in mechanical properties, such as decreased stiffness and increased deformability, which are important phenotypic events linked to their progression and metastasis.
  • A multi-step carcinogenic model was employed to analyze these changes using advanced techniques like atomic force microscopy and microfluidic cytometry, revealing that these mechanotype alterations occur early during cancer transformation.
  • The study highlights that as cells transition from normal to preinvasive to invasive stages, their stiffness decreases and deformability increases, with the epithelial to mesenchymal transition identified as a key molecular pathway driving these changes.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) have raised high expectations as a novel class of diagnostics and therapeutics. However, variabilities in EV isolation methods and the unresolved structural complexity of these biological-nanoparticles (sub-100 nm) necessitate rigorous biophysical characterization of single EVs. Here, using atomic force microscopy (AFM) in conjunction with direct stochastic optical reconstruction microscopy (dSTORM), micro-fluidic resistive pore sizing (MRPS), and multi-angle light scattering (MALS) techniques, we compared the size, structure and unique surface properties of breast cancer cell-derived small EVs (sEV) obtained using four different isolation methods.

View Article and Find Full Text PDF

Fabrication of a two-dimensional covalent network of honeycomb nanosheets comprising small 1,3,5-triamino benzene and benzene-1,3,5-tricarboxaldehyde aromatic building blocks was conducted on Au(111) in a pH-controlled aqueous solution. scanning tunneling microscopy revealed a large defect-free and homogeneous honeycomb π-conjugated nanosheet at the Au(111)/liquid interface. An electrochemical potential dependence indicated that the nanosheets were the result of thermodynamic self-assembly based not only on the reaction equilibrium but also on the adsorption (partition) equilibrium, which was controlled by the building block surface coverage as a function of electrode potential.

View Article and Find Full Text PDF

Background Concomitant exposure to environmental/occupational toxicants such as aflatoxin B1 (AFB1) and arsenic in some regions of the world has been well reported. Therefore, this calls for the assessment of the efficacy of agents such as phytochemicals, which are already known for their ethno-medicinal uses in prophylaxis/remediation. We investigated the possible cytotoxic bio-interactions between AFB1 and sodium arsenite (SA) in urinary bladder cells.

View Article and Find Full Text PDF

Neuromorphic networks are formed by random self-assembly of silver nanowires. Silver nanowires are coated with a polymer layer after synthesis in which junctions between two nanowires act as resistive switches, often compared with neurosynapses. We analyze the role of single junction switching in the dynamical properties of the neuromorphic network.

View Article and Find Full Text PDF

Palpable thyroid lesions are common, and although mostly benign, lethal malignant nodules do occur and may be difficult to differentiate. Here, we introduce the use of a piezoelectric system called Smart-touch fine needle (or STFN) mounted directly onto conventional biopsy needles, to evaluate abnormal tissues, through quantitative real-time measurements of variations in tissue stiffness as the needle penetrates tissue. Using well-characterized biomaterials of known stiffness and explanted animal tissue models, we first established experimental protocols for STFN measures on biological tissues, as well as optimized device design for high signal-to-noise ratio.

View Article and Find Full Text PDF

The hydroferrate fluid MRN-100, an iron-based compound with potent antioxidant characteristics, was examined to identify its possible anti-inflammatory effects on human dendritic cells (DCs) in vitro. Human monocyte-derived DCs were treated with MRN-100 at two concentrations (50 and 100 μL/mL) for 24 h and then stimulated with or without lipopolysaccharides (LPS). The expression of DC maturation markers was assessed by flow cytometry and the production of cytokines was determined by enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Transient receptor potential vanilloid (TRPV) channels act as sensors of pain, temperature, and other external stimuli. We have recently shown that DPV576, an aqueous mixture of nanodiamond (ND) and nanoplatinum (NP), can modulate the activity of TRPV on human primary keratinocytes, suggesting their potential as a possible pain modulator. Here, we sought to examine the effect of DPV576 in modulating the functions of human CD4⁺ T lymphocytes and whether the modulation is mediated via TRPV channels.

View Article and Find Full Text PDF

Marina crystal minerals (MCM) are a mixture that contains crystallized minerals along with trace elements extracted from seawater. It is a nutritional supplement that is capable of enhancing natural killer (NK) cell activity and increasing T and B cell proliferation in humans post ingestion. However, its effect on dendritic cells (DCs), the cells that bridge innate and adaptive immunity, is not yet known.

View Article and Find Full Text PDF

The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway.

View Article and Find Full Text PDF

Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing.

View Article and Find Full Text PDF

Background: Epidemiological and experimental evidences have shown cancer as a leading cause of death worldwide. Although the folklore use of plants as a reliable source of health-restoring principles is well-documented, the search for more of such plants that are active against diseases, such as cancer, continues. We report here a laboratory-based evidence of the relevance of an ethanol leaf extract of Anogeissus leiocarpus (A2L) in comparison with resveratrol, a natural polyphenol, in cancer therapy.

View Article and Find Full Text PDF

Lung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant airway epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of the unselected immortalized epithelial cell lines.

View Article and Find Full Text PDF

Objective: The fatality of cancer is mostly dependent on the possibility of occurrence of metastasis. Thus, if the development of metastasis can be prevented through novel therapeutic strategies targeted against this process, then the success of cancer treatment will drastically increase. In this study, therefore, we evaluated the antimetastatic potentials of an extract of Khaya senegalensis and curcumin on the metastatic liver cell line HepG2, and also assessed the anticancer property of the extract.

View Article and Find Full Text PDF

Stem cell-derived cardiomyocytes provide a promising tool for human developmental biology, regenerative therapies, disease modeling, and drug discovery. As human pluripotent stem cell-derived cardiomyocytes remain functionally fetal-type, close monitoring of electrophysiological maturation is critical for their further application to biology and translation. However, to date, electrophysiological analyses of stem cell-derived cardiomyocytes has largely been limited by biologically undefined factors including 3D nature of embryoid body, sera from animals, and the feeder cells isolated from mouse.

View Article and Find Full Text PDF

Motivated by reports of low-level DNA contamination in popular commercial DNA purification kits, we employed a novel high-speed atomic force microscopy (HS-AFM) method to detect and characterize particulate and polymeric contaminants in four such systems: Qiagen MinElute PCR Purification, Zymo Research DNA Clean and Concentrator-5, Invitrogen ChargeSwitch-Pro PCR Purification, and Beckman Coulter AMPure XP. HS-AFM avoids amplification artifacts present in PCR or in the sequencing of amplified products, and it requires no chemical labels and easily achieves near-single-molecule sensitivity. Using this technique, we found trace levels of filamentous contamination, similar in appearance to dsDNA, in eluates from the Zymo, Qiagen, and ChargeSwitch kits.

View Article and Find Full Text PDF

Exosomes are ∼100 nanometre diameter vesicles secreted by mammalian cells. These emerging disease biomarkers carry nucleic acids, proteins and lipids specific to the parental cells that secrete them. Exosomes are typically isolated in bulk by ultracentrifugation, filtration or immunoaffinity precipitation for downstream proteomic, genomic, or lipidomic analysis.

View Article and Find Full Text PDF

Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current-voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal-insulator-metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates.

View Article and Find Full Text PDF

Tightly regulated Ca(2+) homeostasis is a prerequisite for proper cardiac function. To dissect the regulatory network of cardiac Ca(2+) handling, we performed a chemical suppressor screen on zebrafish tremblor embryos, which suffer from Ca(2+) extrusion defects. Efsevin was identified based on its potent activity to restore coordinated contractions in tremblor.

View Article and Find Full Text PDF