Publications by authors named "James Gellner"

Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis.

View Article and Find Full Text PDF

Pilot-scale integrated fixed-film activated sludge (IFAS) and non-IFAS control systems were compared, with respect to overall performance and functional behaviors and microbial population composition in the attached and suspended phases. The suspended phases of the control and IFAS systems exhibited similar rates of ammonia consumption; the attached phase in the second aerobic IFAS reactor had significantly higher rates of ammonia consumption and nitrate production than any other biomass source, and the attached biomass from the first aerobic reactor had the lowest ammonia consumption rates. Quantitative polymerase chain reaction (qPCR) indicated the presence of the ammonia-oxidizing bacteria Nitrosomonas oligotropha and the nitrite-oxidizing bacteria Nitrospira spp.

View Article and Find Full Text PDF

Integrated fixed film activated sludge (IFAS) is an increasingly popular modification of conventional activated sludge, consisting of the addition of solid media to bioreactors to create hybrid attached/suspended growth systems. While the benefits of this technology for improvement of nitrification and other functions are well-demonstrated, little is known about its effects on biomass settleability. These effects were evaluated in parallel, independent wastewater treatment trains, with and without IFAS media, both at the pilot (at two solids residence times) and full scales.

View Article and Find Full Text PDF