Publications by authors named "James G Nagy"

Purpose: To develop and test the feasibility of a two-pass iterative reconstruction algorithm with material decomposition designed to obtain quantitative iodine measurements in digital breast tomosynthesis.

Methods: Contrast-enhanced mammography has shown promise as a cost-effective alternative to magnetic resonance imaging for imaging breast cancer, especially in dense breasts. However, one limitation is the poor quantification of iodine contrast since the true three-dimensional lesion shape cannot be inferred from the two-dimensional (2D) projection.

View Article and Find Full Text PDF

Motivation: Spectral unmixing methods attempt to determine the concentrations of different fluorophores present at each pixel location in an image by analyzing a set of measured emission spectra. Unmixing algorithms have shown great promise for applications where samples contain many fluorescent labels; however, existing methods perform poorly when confronted with autofluorescence-contaminated images.

Results: We propose an unmixing algorithm designed to separate fluorophores with overlapping emission spectra from contamination by autofluorescence and background fluorescence.

View Article and Find Full Text PDF

We demonstrate that high-resolution imaging through strong atmospheric turbulence can be achieved by acquiring data with a system that captures short exposure ("speckle") images using a range of aperture sizes and then using a bootstrap multi-frame blind deconvolution restoration process that starts with the smallest aperture data. Our results suggest a potential paradigm shift in how we image through atmospheric turbulence. No longer should image acquisition and post processing be treated as two independent processes: they should be considered as intimately related.

View Article and Find Full Text PDF

We derive Kronecker product approximations, with the help of tensor decompositions, to construct approximations of severely ill-conditioned matrices that arise in three-dimensional (3-D) image processing applications. We use the Kronecker product approximations to derive preconditioners for iterative regularization techniques; the resulting preconditioned algorithms allow us to restore 3-D images in a computationally efficient manner. Through examples in microscopy and medical imaging, we show that the Kronecker approximation preconditioners provide a powerful tool that can be used to improve efficiency of iterative image restoration algorithms.

View Article and Find Full Text PDF