Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy that is associated with an increased risk of developing cutaneous malignancies. Clinical outcomes for these malignancies, including melanoma and keratinocyte cancers (KC), are worse for patients with CLL. Individuals with CLL develop an immunodeficiency of both the adaptive and innate immune system, which plays a role in the increased prevalence of skin cancers.
View Article and Find Full Text PDFThe immune system plays a key role in the suppression and progression of basal cell carcinoma (BCC). The primary aetiological factor for BCC development is exposure to ultraviolet radiation (UVR) which, particularly in lighter Fitzpatrick skin types, leads to the accumulation of DNA damage. UVR has roles in the generation of an immunosuppressive environment, facilitating cancer progression.
View Article and Find Full Text PDFCutaneous squamous cell carcinoma (cSCC) is the most common malignancy in immune-suppressed organ transplant recipients (OTRs). Whilst rates of other malignancies (both cutaneous and non-cutaneous) are elevated in this population, the increase is far less striking. This suggests that cSCC must be a highly immunogenic tumor.
View Article and Find Full Text PDFIn eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, the individual unit of chromatin, can lead to genomic instability, driving a cell into apoptosis, senescence, or cellular proliferation.
View Article and Find Full Text PDFHuman 8-oxoguanine DNA glycosylase-1 (hOGG1) is the key DNA repair enzyme responsible for initiating repair of UV radiation-induced 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). Previously we have shown that basal cells in human epidermis are particularly sensitive to UVA-mediated DNA damage probably due to low expression of hOGG1. Here we investigate some aspects of the regulatory role of Cockayne syndrome B (CSB) on hOGG1 expression and function.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) plays an important role in organ fibrosis, including that of the kidney. Loss of E-cadherin expression is a hallmark of EMT; however, whether the loss of E-cadherin is a consequence or a cause of EMT remains unknown, especially in the renal system. In this study, we show that transforming growth factor (TGF)-beta1-induced EMT in renal tubular epithelial cells is dependent on proteolysis.
View Article and Find Full Text PDFMeasurement of matrix metalloproteinases (MMPs) and their specific tissue inhibitors of metalloproteinases (TIMPs) by the techniques of zymography and reverse zymography provide useful information regarding the status of matrix accumulation or breakdown. This report describes the use of 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF), a fluorescent compound which can be used to label gelatin as a substrate for detection of the gelatin degrading MMP-2 and -9 by zymography. In addition, a modification of the zymographic technique by addition of excess MMPs enables the use of the MDPF-labeled gelatin substrate for the identification and quantification of TIMPs by reverse zymography.
View Article and Find Full Text PDF