Though molecular devices exhibiting potentially useful electrical behavior have been demonstrated, a deep understanding of the factors that influence charge transport in molecular electronic junctions has yet to be fully realized. Recent work has shown that a mechanistic transition occurs from direct tunneling to field emission in molecular electronic devices. The magnitude of the voltage required to enact this transition is molecule-specific, and thus measurement of the transition voltage constitutes a form of spectroscopy.
View Article and Find Full Text PDFSemiconductor-molecule-metal junctions consisting of alkanethiol monolayers self-assembled on both p(+) and n(-) type highly doped Si(111) wires contacted with a 10 µm Au wire in a crossed-wire geometry are examined. Low temperature transport measurements reveal that molecule-induced semiconductor interface states control charge transport across these systems. Inelastic electron tunneling spectroscopy also highlights the strong contribution of the induced interface states to the observed charge transport.
View Article and Find Full Text PDFBuilding reliable molecular electronic devices requires the ability to accurately and reproducibly measure the electronic response of the system under study. Here we review our work with three distinct molecular electronic test structures which show excellent agreement for measurements on molecular wires and molecular switch molecules. We also discuss how inelastic electron tunneling spectroscopy enables chemical characterization of molecular electronic elements in actual device geometries.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2007
Using inelastic electron tunneling spectroscopy (IETS) to measure the vibronic structure of nonequilibrium molecular transport, aided by a quantitative interpretation scheme based on Green's function-density functional theory methods, we are able to characterize the actual pathways that the electrons traverse when moving through a molecule in a molecular transport junction. We show that the IETS observations directly index electron tunneling pathways along the given normal coordinates of the molecule. One can then interpret the maxima in the IETS spectrum in terms of the specific paths that the electrons follow as they traverse the molecular junction.
View Article and Find Full Text PDFWe report inelastic electron tunneling spectroscopy (IETS) of multilayer molecular junctions with and without incorporated metal nanoparticles. The incorporation of metal nanoparticles into our devices leads to enhanced IET intensity and a modified line shape for some vibrational modes. The enhancement and line-shape modification are both the result of a low lying hybrid metal nanoparticle-molecule electronic level.
View Article and Find Full Text PDFDetermining the selection rules for the interaction of tunneling charge carriers with molecular vibrational modes is important for a complete understanding of charge transport in molecular electronic junctions. Here, we report the low-temperature charge transport characteristics for junctions formed from hexadecanethiol molecules having varying degrees of fluorination. Our results demonstrate that C-F vibrations are not observed in inelastic electron tunneling spectroscopy (IETS).
View Article and Find Full Text PDFWe describe the synthesis of two oligo(phenylene vinylene)s (OPVs) with a hydroquinone moiety and a thiol anchor group: 4-(2',5'-dihydroxystyryl)benzyl thioacetate and 4-[4'-(2' ',5' '-dihydroxystyryl)styryl]benzyl thioacetate. Monolayers on gold of these molecules were examined by electrochemical techniques to determine the electron transfer kinetics of the hydroquinone functionality (H2Q) through these delocalized tethers ("molecular wires") as a function of pH. Between pH 4 and 9, rate constants were ca.
View Article and Find Full Text PDFTethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved pi-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry.
View Article and Find Full Text PDFWe report the fabrication and characterization of multilayer thin films incorporating 1,8-octanedithiols and Ni atoms. Low-temperature charge transport measurements exhibit inelastic co-tunneling and resonant tunneling features that correspond energetically to vibrational excitations of the molecular multilayer. Several junctions exhibit changes in conductance features characteristic of charge defect-gating.
View Article and Find Full Text PDFWe compare scanning tunneling microscopy (STM) imaging with single-molecule conductive atomic force microscopy (C-AFM) measurements by probing a series of structurally related thiol-terminated oligo(phenylenevinylene)s (OPVs) designed to have unique charge-transport signatures. When one or two methylene spacers are inserted between the thiol points of attachment and the OPV core, a systematic reduction in the imaged molecular transconductance and the current transmitted through a metal-molecule-metal junction containing the molecule is observed, indicating good agreement between STM and C-AFM measurements. However, a structure where the OPV backbone is interrupted by a [2.
View Article and Find Full Text PDFCurrent-voltage measurements of metal-molecule-metal junctions formed from pi-conjugated thiols exhibit an inflection point on a plot of ln(I/V(2)) vs 1/V, consistent with a change in transport mechanism from direct tunneling to field emission. The transition voltage was found to scale linearly with the offset in energy between the Au Fermi level and the highest occupied molecular orbital as determined by ultraviolet photoelectron spectroscopy. Asymmetric voltage drops at the two metal-molecule interfaces cause the transition voltage to be dependent on bias polarity.
View Article and Find Full Text PDFReported in this contribution are the synthesis, characterization, and charge transport properties of wire-like Ru2(ap)4(OPEn), where ap is 2-anilinopyridinate and OPE is -(CCC6H4)nSCH2CH2SiMe3 with n = 1 (1) and 2 (2). Scanning tunneling microscopy (STM) measurements of compound 2 inserted into a SAM of C11 thiol reveal that molecule 2 exhibits (i) the stochastic switching characteristic of wire molecules embedded in insulating SAMs and (ii) higher conductivity than the C11 thiol SAM. More importantly, analysis of the molecular electronic decay constant (beta) exhibits a decrease of at least 15% as compared to purely organic molecular analogues.
View Article and Find Full Text PDFCharge transport characteristics for metal-molecule-metal junctions containing two structurally related pi-conjugated systems were studied to probe pi-pi interactions in molecular junctions. The first molecule contains a typical pi-conjugated framework derived from phenylene vinylene units, whereas the second has the phenylene vinylene structure interrupted by a [2.2]paracyclophane (pCp) core.
View Article and Find Full Text PDFMolecular electronics has been proposed as a pathway for high-density nanoelectronic devices. This pathway involves the development of a molecular memory device based on reversible switching of a molecule between two conducting states in response to a trigger, such as an applied voltage. Here we demonstrate that voltage-triggered switching is indeed a molecular phenomenon by carrying out studies on the same molecule using three different experimental configurations-scanning tunnelling microscopy, crossed-wire junction, and magnetic-bead junction.
View Article and Find Full Text PDFTo investigate the electrical characteristics of organometallic complexes as molecular conductors, organometallic pi-conjugated molecules of the type trans-[PtL2(CCC6H4SAc-4)2], where L = PCy3, PBu3, PPh3, P(OEt)3, P(OPh)3, were synthesized and characterized by NMR, IR, UV, and X-ray spectroscopies. For the three complexes (L = PCy3, PPh3, and P(OEt)3) that could be measured using a cross-wire junction technique, the current-voltage (I-V) characteristics of a molecular monolayer of these complexes showed no ligand effect, despite spectroscopic evidence that electronic interaction between the phosphine ligands and the pi-system does occur. It was concluded that the tunneling efficiency across the molecule is the determining factor for conduction in this metal-molecule-metal system.
View Article and Find Full Text PDFCurrent-voltage (I-V) characteristics for metal-molecule-metal junctions formed from three classes of molecules measured with a simple crossed-wire molecular electronics test-bed are reported. Junction conductance as a function of molecular structure is consistent with I-V characteristics calculated from extended Hückel theory coupled with a Green's function approach, and can be understood on the basis of bond-length alternation.
View Article and Find Full Text PDF