Publications by authors named "James G Hecker"

Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Lipid-mediated nucleic acid delivery is an alternative to viral vector-mediated gene delivery and has the following advantages. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation.

View Article and Find Full Text PDF

Background: Perioperative seizures may affect 1% to 50% of patients undergoing craniotomy and adversely impact outcomes. However, data on intraoperative seizures are limited. This retrospective case-control study investigated the incidence and risk factors for intraoperative seizures during elective supratentorial craniotomy involving evoked potential monitoring.

View Article and Find Full Text PDF

We examined the effect of early intensive care unit (ICU) adherence to 2007 Brain Trauma Foundation Guideline indicators after traumatic brain injury (TBI) on inpatient mortality at a level 1 trauma center in India (Jay Prakash Narayan Apex Trauma Center [JPNATC]) and Harborview Medical Center (HMC) in U.S. among adults older than 18 years with severe TBI.

View Article and Find Full Text PDF

Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation.

View Article and Find Full Text PDF

Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery where transient gene expression is desirable. However, cationic lipid-mediated delivery of DNA to post-mitotic cells is often of low efficiency, due to the difficulty of DNA translocation to the nucleus.

View Article and Find Full Text PDF

Aim: To report our institutional experience with intraoperative jugular venous oximetry during pediatric intracranial surgery to guide anesthetic care.

Background: The utility of intraoperative jugular venous oximetry in adults undergoing intracranial surgery is well known. However, there is a little information on its' application in children during intracranial surgery.

View Article and Find Full Text PDF

Intrathecal delivery of gene therapeutics is a route of administration that overcomes several of the limitations that plague current immunosuppressive treatments for autoimmune diseases of the central nervous system (CNS). Here we report intrathecal delivery of small amounts (3 μg) of plasmid DNA that codes for an immunomodulatory fusion protein, OX40-TRAIL, composed of OX40, a tumor necrosis factor receptor, and tumor necrosis factor related apoptosis inducing ligand (TRAIL). This DNA was delivered in a formulated nucleic acid-lipid complex (lipoplexes) with an asymmetric two-chain cationic lipid myristoyl (14:0) and lauroyl (12:1) rosenthal inhibitor-substituted compound (MLRI) formed from the tetraalkylammonium glycerol-based compound N-(1-(2,3-dioleoyloxy)-propyl-N-1-(2-hydroxy)ethyl)-N,N-dimethyl ammonium iodide.

View Article and Find Full Text PDF

The heat shock proteins (HSPs) are members of highly conserved families of molecular chaperones that have multiple roles in vivo. We discuss the HSPs in general, and Hsp70 and Hsp27 in particular, and their rapid induction by severe stress in the context of tissue and organ expression in physiology and disease. We describe the current state of knowledge of the relationship and interactions between extra- and intracellular HSPs and describe mechanisms and significance of extracellular expression of HSPs.

View Article and Find Full Text PDF

We, and others, have observed that the structure of cationic lipids appears to have a significant effect on the transfection efficacy of optimized nucleic acid/cationic lipid complexes (lipoplexes) used for in vitro and in vivo gene delivery and expression. Although there are many in vitro comparisons of lipid reagents for gene delivery, few comparisons have been made in vivo. We previously reported the effects of changes in hydrophobic domain chain length and chain asymmetry, changes in headgroup composition, and counterion exchange.

View Article and Find Full Text PDF

The balance of redox is pivotal for normal function and integrity of tissues. Ischemic insults occur as results of a variety of conditions, leading to an accumulation of reactive oxygen species (ROS) and an imbalanced redox status in the tissues. The oxidant stress may activate signaling mechanisms provoking more toxic events, and eventually cause tissue damage.

View Article and Find Full Text PDF

We previously showed that a vector:lipid delivery system, comprised of a plasmid DNA vector and cationic lipid (lipoplex), when injected into the cerebrospinal fluid (CSF) of rats can deliver reporter genes in vivo efficiently and with widespread expression to the Central Nervous System (CNS). To further characterize this delivery system, we now present experiments that demonstrate the in vivo time-to-peak expression of the reporter gene, firefly luciferase. We infused a formulated lipoplex containing the lipid MLRI [dissymmetric myristoyl (14:0) and lauroyl (12:1) rosenthal inhibitor-substituted compound formed from the tetraalkylammonium glycerol-based DORI] and pNDluc, a luciferase vector, into CSF in the cisterna magna (CM) of the rat.

View Article and Find Full Text PDF

Attachment of targeted ligands to nonviral DNA or RNA delivery systems is a promising strategy that seeks to overcome the poor target selectivity generally observed in systemic delivery applications. Several methods have been developed for the conjugation of ligands to lipids or polymers, however, direct conjugation of ligands onto lipid- or polymer-nucleic acid complexes is not as straightforward. Here, we examine an oximation approach to directly label a lipoplex formulation.

View Article and Find Full Text PDF

An understanding of the time course and correlation with injury of heat shock proteins (HSPs) released during brain and/or spinal cord cellular stress (ischemia) is critical in understanding the role of the HSPs in cellular survival, and may provide a clinically useful biomarker of severe cellular stress. We have analyzed the levels of HSPs in the cerebrospinal fluid (CSF) from patients who are undergoing thoracic aneurysm repair. Blood and CSF samples were collected at regular intervals, and CSF was analyzed by enzyme-linked immunosorbent assay for HSP70 and HSP27.

View Article and Find Full Text PDF

Inhaled anesthetics produce many effects and bind to a large number of brain proteins, but it is not yet clear if this is accompanied by widespread changes in gene expression of the biological targets. Such changes in expression might implicate functionally important targets from the large pool of binding targets. Both rats and isolated primary cortical neurons were exposed to anesthetics and DNA oligonucleotide microarrays were used to detect and quantify transcriptional changes in neural tissue.

View Article and Find Full Text PDF

Heat shock protein (Hsp)70 can suppress both necrosis and apoptosis induced by various injuries in vivo and in vitro. However, the relative importance of different functions and binding partners of Hsp70 in ischemic protection is unknown. To explore this question, we tested the ability of Hsp70-K71E, an adenosine triphosphate (ATP)ase-deficient point mutant, and Hsp70-381-640, a deletion mutant lacking the ATPase domain and encoding the carboxyl-terminal portion, to protect against ischemia-like injury in vivo and in vitro.

View Article and Find Full Text PDF

Fluid percussion brain injury (FPI) impairs pial artery dilation to activators of the ATP-sensitive (K(ATP)) and calcium-activated (K(Ca)) K(+) channels. This study investigated the role of heat shock protein (HSP) in the modulation of K(+) channel-induced pial artery dilation after FPI in newborn pigs equipped with a closed cranial window. Under nonbrain injury conditions, topical coadministration of exogenous HSP-27 (1 mug/ml) blunted dilation to cromakalim, CGRP, and NS-1619 (10(-8) and 10(-6) M; cromakalim and CGRP are K(ATP) agonists and NS-1619 is a K(Ca) agonist).

View Article and Find Full Text PDF

Clinical applications of gene therapy require advances in gene delivery systems. Although numerous clinical trials are already underway, the ultimate success of gene therapies will depend on gene transfer vectors that facilitate the expression of a specific gene at therapeutic levels in the desired cell populations without eliciting cytotoxicity. In clinical applications for which transient expression is desirable, mRNA delivery is of particular interest.

View Article and Find Full Text PDF

Low levels of transfection efficacy and lipid-associated cytotoxicity have complicated the use of cationic lipids to facilitate transfer of exogenous DNA to eukaryotic cells. To address these issues, we synthesized a panel of six tetraester polyamines that were designed to minimize cytotoxicity by using pentaerythritol to link the hydrophobic and the DNA-binding domains. We conducted this study to probe the effects of structural modifications around pentaerythritol as a linker on transfection activity and cell viability.

View Article and Find Full Text PDF