Publications by authors named "James Frelichowski"

Article Synopsis
  • Researchers analyzed high-throughput sequencing data from cotton leafroll dwarf virus in Mississippi, finding contigs similar to reverse transcriptases from plant pararetroviruses.
  • They conducted a detailed study that led to the identification of endogenous viral elements (EVEs) in upland cotton, named "endogenous cotton pararetroviral elements" (eCPRVE).
  • The study revealed a significant 15 kbp-long locus on chromosome A04, containing viral genes and suggesting a link to a new genus within the pararetrovirus family, along with evidence of recent evolutionary changes in related species.
View Article and Find Full Text PDF

Fiber length is one of the major properties determining the quality and commercial value of cotton. To understand the mechanisms regulating fiber length, genetic variations of cotton species and mutants producing short fibers have been compared with cultivated cottons generating long and normal fibers. However, their phenomic variation other than fiber length has not been well characterized.

View Article and Find Full Text PDF

Observable qualitative traits are relatively stable across environments and are commonly used to evaluate crop genetic diversity. Recently, molecular markers have largely superseded describing phenotypes in diversity surveys. However, qualitative descriptors are useful in cataloging germplasm collections and for describing new germplasm in patents, publications, and/or the Plant Variety Protection (PVP) system.

View Article and Find Full Text PDF

Upon assembling the first Gossypium herbaceum (A) genome and substantially improving the existing Gossypium arboreum (A) and Gossypium hirsutum ((AD)) genomes, we showed that all existing A-genomes may have originated from a common ancestor, referred to here as A, which was more phylogenetically related to A than A. Further, allotetraploid formation was shown to have preceded the speciation of A and A. Both A-genomes evolved independently, with no ancestor-progeny relationship.

View Article and Find Full Text PDF

We employed phylogenomic methods to study molecular evolutionary processes and phylogeny in the geographically widely dispersed New World diploid cottons (Gossypium, subg. Houzingenia). Whole genome resequencing data (average of 33× genomic coverage) were generated to reassess the phylogenetic history of the subgenus and provide a temporal framework for its diversification.

View Article and Find Full Text PDF

Background: Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured.

View Article and Find Full Text PDF

Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we examined genetic diversity, haplotype distribution and linkage disequilibrium patterns in the G.

View Article and Find Full Text PDF

Some naturally occurring cotton accessions contain commercially attractive seed oil fatty acid profiles. The likely causal factor for a high-oleate trait in pima cotton ( Gossypium barbadense ) accession GB-713 is described here. Vegetable oils are broadly used in the manufacture of many human and animal nutritional products, and in various industrial applications.

View Article and Find Full Text PDF

A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G.

View Article and Find Full Text PDF

The report that the cotton leaf perforator, Bucculatrix thurberiella, is one of the few insect herbivores to attack Gossypium thurberi prompted an investigation of the terpenoids present in the leaves of this wild species of cotton. Members of Gossypium produce subepidermal pigment glands in their leaves that contain the dimeric sesquiterpenoid gossypol as well as other biosynthetically related terpenoids. In addition to gossypol, a previously unknown dimeric sesquiterpenoid, gossypolhemiquinone (GHQ), was identified in trace amounts in G.

View Article and Find Full Text PDF

High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G.

View Article and Find Full Text PDF

A core marker set containing markers developed to be informative within a single commercial cotton species can elucidate diversity structure within a multi-species subset of the Gossypium germplasm collection. An understanding of the genetic diversity of cotton (Gossypium spp.) as represented in the US National Cotton Germplasm Collection is essential to develop strategies for collecting, conserving, and utilizing these germplasm resources.

View Article and Find Full Text PDF

Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala 'Maxxa', 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G.

View Article and Find Full Text PDF