Publications by authors named "James Finnigan"

Glycan-mediated interactions play a crucial role in biology and medicine, influencing signalling, immune responses, and disease pathogenesis. However, the use of glycans in biosensing and diagnostics is limited by cross-reactivity, as certain glycan motifs can be recognised by multiple biologically distinct protein receptors. To address this specificity challenge, we report the enzymatic synthesis of a 150-member library of site-specifically fluorinated Lewis analogues ('glycofluoroforms') using naturally occurring enzymes and fluorinated monosaccharides.

View Article and Find Full Text PDF

In the ever-growing demand for sustainable ways to produce high-value small molecules, biocatalysis has come to the forefront of greener routes to these chemicals. As such, the need to constantly find and optimise suitable biocatalysts for specific transformations has never been greater. Metagenome mining has been shown to rapidly expand the toolkit of promiscuous enzymes needed for new transformations, without requiring protein engineering steps.

View Article and Find Full Text PDF
Article Synopsis
  • * Two engineered FMN-dependent "ene"-reductases (EREDs) were developed to enable regiodivergent hydroalkylations, allowing for easier creation of constitutional isomers compared to traditional methods.
  • * Specific engineered variants of EREDs were designed to favor different unsaturated ketones during the reaction, with accompanying investigations into the effects of mutations and the mechanism using isotope labeling.
View Article and Find Full Text PDF

Enzymes are being increasingly exploited for their potential as industrial biocatalysts. Establishing a portfolio of useful biocatalysts from large and diverse protein family is challenging and a systematic method for candidate selection promises to aid in this task. Moreover, accurate enzyme functional annotation can only be confidently guaranteed through experimental characterisation in the laboratory.

View Article and Find Full Text PDF

Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure-activity-property-toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery.

View Article and Find Full Text PDF

is an invaluable research tool for many fields of biology, in particular for the production of recombinant enzymes. However, the activity of many such recombinant enzymes cannot be determined using standard biochemical assays, as often, the relevant substrates are not known, or the products produced are not detectable. Today, the biochemical footprints of such unknown enzyme activities can be revealed via the analysis of the metabolomes of the recombinant clones in which they are expressed, using sensitive technologies such as mass spectrometry.

View Article and Find Full Text PDF

The development of efficient and sustainable methods for the synthesis of nitrogen heterocycles is an important goal for the chemical industry. In particular, substituted chiral piperidines are prominent targets due to their prevalence in medicinally relevant compounds and their precursors. A potential biocatalytic approach to the synthesis of this privileged scaffold would be the asymmetric dearomatization of readily assembled activated pyridines.

View Article and Find Full Text PDF

Chiral β-hydroxysulfides are an important class of organic compounds which find broad application in organic and pharmaceutical chemistry. Herein we describe the development of novel biocatalytic and chemoenzymatic methods for the enantioselective synthesis of β-hydroxysulfides by exploiting ketoreductase (KRED) enzymes. Four KREDs were discovered from a pool of 384 enzymes identified and isolated through a metagenomic approach.

View Article and Find Full Text PDF

Chiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals, yet their preparation often relies on low-efficiency multi-step synthesis. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported.

View Article and Find Full Text PDF

In the last two decades, several PET-degrading enzymes from already known microorganisms or metagenomic sources have been discovered to face the growing environmental concern of polyethylene terephthalate (PET) accumulation. However, there is a limited number of high-throughput screening protocols for PET-hydrolyzing activity that avoid the use of surrogate substrates. Herein, a microplate fluorescence screening assay was described.

View Article and Find Full Text PDF

The Covid-19 pandemic highlights the urgent need for cost-effective processes to rapidly manufacture antiviral drugs at scale. Here we report a concise biocatalytic process for Molnupiravir, a nucleoside analogue recently approved as an orally available treatment for SARS-CoV-2. Key to the success of this process was the development of an efficient biocatalyst for the production of -hydroxy-cytidine through evolutionary adaption of the hydrolytic enzyme cytidine deaminase.

View Article and Find Full Text PDF

2-Aminotetralin and 3-aminochroman derivatives are key structural motifs present in a wide range of pharmaceutically important molecules. Herein, we report an effective biocatalytic approach towards these molecules through the enantioselective reductive coupling of 2-tetralones and 3-chromanones with a diverse range of primary amine partners. Metagenomic imine reductases (IREDs) were employed as the biocatalysts, obtaining high yields and enantiocomplementary selectivity for >15 examples at preparative scale, including the precursors to Ebalzotan, Robalzotan, Alnespirone and 5-OH-DPAT.

View Article and Find Full Text PDF

Finding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening.

View Article and Find Full Text PDF

Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization.

View Article and Find Full Text PDF

The enantioselective synthesis of α-thiocarboxylic acids by biocatalytic dynamic kinetic resolution (DKR) of nitrile precursors exploiting nitrilase enzymes is described. A panel of 35 nitrilase biocatalysts were screened and enzymes Nit27 and Nit34 were found to catalyse the DKR of racemic α-thionitriles under mild conditions, affording the corresponding carboxylic acids with high conversions and good-to-excellent ee. The ammonia produced in situ during the biocatalytic transformation favours the racemization of the nitrile enantiomers and, in turn, the DKR without the need of any external additive base.

View Article and Find Full Text PDF

Enantioenriched 2-aryl azepanes and 2-arylbenzazepines were generated biocatalytically by asymmetric reductive amination using imine reductases or by deracemization using monoamine oxidases. The amines were converted to the corresponding N'-aryl ureas, which rearranged on treatment with base with stereospecific transfer of the aryl substituent to the 2-position of the heterocycle via a configurationally stable benzyllithium intermediate. The products are previously inaccessible enantioenriched 2,2-disubstituted azepanes and benzazepines.

View Article and Find Full Text PDF

Enzymes are attractive tools for synthetic applications. To be viable for industrial use, enzymes need sufficient stability towards the desired reaction conditions such as high substrate and cosolvent concentration, non-neutral pH and elevated temperatures. Thermal stability is an attractive feature not only because it allows for protein purification by thermal treatment and higher process temperatures but also due to the associated higher stability against other destabilising factors.

View Article and Find Full Text PDF

Systemic sclerosis is an autoimmune idiopathic connective tissue disease, characterized by vasculopathy, inflammation and fibrosis. There appears to be a link between inflammation and fibrosis, although the exact nature of the relationship is unknown. Serum amyloid A (SAA) is an acute-phase protein that is elevated up to 1000-fold in times of infection or inflammation.

View Article and Find Full Text PDF

Accumulative evidence demonstrates the crucial role of evolutionary conserved Toll-like receptors (TLRs) in identifying microbial or viral compounds. TLRs are also able to recognise endogenous molecules which are released upon cell damage or stress and have been shown to play a key role in numerous autoimmune diseases including systemic sclerosis (SSc). A classic feature of SSc, is vascular injury manifested as Raynaud's phenomenon and ischaemia of the skin, resulting in the release of endogenous TLR ligands during inflammation and local tissue damage.

View Article and Find Full Text PDF