Purpose: Pilot studies suggest that waiting 15 minutes after a subcutaneous tranexamic acid injection is associated with decreased intraoperative bleeding and postoperative ecchymosis in eyelid surgery. The outcomes of commencing eyelid surgery immediately after injection without a waiting period remain unexplored.
Methods: This prospective, randomized, multicenter, double-masked, controlled study examined bilateral symmetric upper and/or lower lid blepharoplasty or ptosis repair.
Compare postoperative outcomes in cataract surgery between eyes with standard drop regimen versus dropless protocol by residents. Retrospective cohort study between April 1, 2018 and March 31, 2020. The study was performed at Lyndon B.
View Article and Find Full Text PDFJ Health Care Poor Underserved
October 2022
Vaccination is a safe and effective way to protect against SARS-CoV-2. Two of the three authorized SARS-CoV-2 vaccines require two doses, presenting logistical challenges. Those with unstable housing face barriers that amplify these challenges.
View Article and Find Full Text PDFPurpose: To describe clinical characteristics and visual outcomes of non-traumatic open globe injuries.
Setting: A level 1 trauma centre in a large urban medical centre.
Design: Retrospective study.
Light-emitting diodes (LEDs) based on perovskite quantum dots have shown external quantum efficiencies (EQEs) of over 23% and narrowband emission, but suffer from limited operating stability. Reduced-dimensional perovskites (RDPs) consisting of quantum wells (QWs) separated by organic intercalating cations show high exciton binding energies and have the potential to increase the stability and the photoluminescence quantum yield. However, until now, RDP-based LEDs have exhibited lower EQEs and inferior colour purities.
View Article and Find Full Text PDFAsian American medical students (AAMSs) face significant bias in the medical learning environment and are more likely than White students to perceive their school climate negatively. Little is known about the factors that contribute to AAMSs' negative experiences. This perspective aims to describe AAMSs' experiences with diversity and inclusion efforts using survey data from a midwest regional conference, Asians in Medicine: A Conference on Advocacy and Allyship.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2021
The all-inorganic nature of CsPbI perovskites allows to enhance stability in perovskite devices. Research efforts have led to improved stability of the black phase in CsPbI films; however, these strategies-including strain and doping-are based on organic-ligand-capped perovskites, which prevent perovskites from forming the close-packed quantum dot (QD) solids necessary to achieve high charge and thermal transport. We developed an inorganic ligand exchange that leads to CsPbI QD films with superior phase stability and increased thermal transport.
View Article and Find Full Text PDFIt remains a central challenge to the information display community to develop red light-emitting diodes (LEDs) that meet demanding color coordinate requirements for wide color gamut displays. Here, we report high-efficiency, lead-free (PEA)SnI perovskite LEDs (PeLEDs) with color coordinates (0.708, 0.
View Article and Find Full Text PDFMetal halide perovskites have emerged as promising candidates for solution-processed blue light-emitting diodes (LEDs). However, halide phase segregation - and the resultant spectral shift - at LED operating voltages hinders their application. Here we report true-blue LEDs employing quasi-two-dimensional cesium lead bromide with a narrow size distribution of quantum wells, achieved through the incorporation of a chelating additive.
View Article and Find Full Text PDFColloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport and for applications in optoelectronics. Forming high-quality QD solids-necessary for device fabrication-requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites.
View Article and Find Full Text PDFShortwave infrared colloidal quantum dots (SWIR-CQDs) are semiconductors capable of harvesting across the AM1.5G solar spectrum. Today's SWIR-CQD solar cells rely on spin-coating; however, these films exhibit cracking once thickness exceeds ∼500 nm.
View Article and Find Full Text PDFThe past decade has witnessed an explosion in applications for neural recording and stimulation in the treatment of clinical disorders. Neuromodulatory approaches are now a mainstay of care for essential tremor and Parkinson's disease, and are expanding rapidly into a wide range of other neurological and psychiatric diseases. In parallel, advancements in endovascular approaches to cerebrovascular diseases have resulted in minimally invasive techniques that deliver devices to neural tissue in the central and peripheral nervous systems, with significantly improved safety and efficacy.
View Article and Find Full Text PDFMetal halide perovskites show promise for light-emitting diodes (LEDs) owing to their facile manufacture and excellent optoelectronic performance, including high color purity and spectral stability, especially in the green region. However, for blue perovskite LEDs, the emission spectrum line width is broadened to over 25 nm by the coexistence of multiple reduced-dimensional perovskite domains, and the spectral stability is poor, with an undesirable shift (over 7 nm) toward longer wavelengths under operating conditions, degradation that occurs due to phase separation when mixed halides are employed. Here we demonstrate chloride insertion-immobilization, a strategy that enables blue perovskite LEDs, the first to exhibit narrowband (line width of 18 nm) and spectrally stable (no wavelength shift) performance.
View Article and Find Full Text PDFReduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide.
View Article and Find Full Text PDFInfrared-absorbing colloidal quantum dots (IR CQDs) are materials of interest in tandem solar cells to augment perovskite and cSi photovoltaics (PV). Today's best IR CQD solar cells rely on the use of passivation strategies based on lead iodide; however, these fail to passivate the entire surface of IR CQDs. Lead chloride passivated CQDs show improved passivation, but worse charge transport.
View Article and Find Full Text PDFColloidal quantum dots (CQDs) have recently gained attention as materials for manufacturing optoelectronic devices in view of their tunable light absorption and emission properties and compatibility with low-temperature thin-film manufacture. The realization of CQD inkjet-printed infrared photodetectors has thus far been hindered by incompatibility between the chemical processes that produce state-of-the-art CQD solution-exchanged inks and the requirements of ink formulations for inkjet materials processing. To achieve inkjet-printed CQD solids with a high degree of reproducibility, as well as with the needed morphological and optoelectronic characteristics, we sought to overcome the mismatch among these processing conditions.
View Article and Find Full Text PDFColloidal quantum dots (CQDs) allow broad tuning of the bandgap across the visible and near-infrared spectral regions. Recent advances in applying CQDs in light sensing, photovoltaics, and light emission have heightened interest in achieving further synthetic improvements. In particular, improving monodispersity remains a key priority in order to improve solar cells' open-circuit voltage, decrease lasing thresholds, and improve photodetectors' noise-equivalent power.
View Article and Find Full Text PDFColloidal quantum dots (CQDs) can be used to extend the response of solar cells, enabling the utilization of solar power that lies to the red of the bandgap of c-Si and perovskites. To achieve largely complete absorption of infrared (IR) photons in CQD solids requires thicknesses on the micrometer range; however, this exceeds the typical diffusion lengths (≈300 nm) of photoexcited charges in these materials. Nanostructured metal back electrodes that grant the cell efficient IR light trapping in thin active layers with no deterioration of the electrical properties are demonstrated.
View Article and Find Full Text PDFColloidal quantum dots have garnered significant interest in optoelectronics, particularly in quantum dot solar cells (QDSCs). Here we report QDSCs fabricated using a ligand that is modified, following film formation, such that it becomes an efficient hole transport layer. The ligand, O-((9H-fluoren-9-yl)methyl) S-(2-mercaptoethyl) carbonothioate (FMT), contains the surface ligand 1,2-ethanedithiol (EDT) protected at one end using fluorenylmethyloxycarbonyl (Fmoc).
View Article and Find Full Text PDFMetal halide perovskites exhibit outstanding optoelectronic properties: superior charge carrier mobilities, low densities of deep trap states, high photoluminescence quantum yield, and wide color tunability. The introduction of dopant ions provides pathways to manipulate the electronic and chemical features of perovskites. In metal halide perovskites ABX, where A is a monovalent cation (e.
View Article and Find Full Text PDFOrganic-inorganic hybrid perovskite solar cells (PSCs) have seen a rapid rise in power conversion efficiencies in recent years; however, they still suffer from interfacial recombination and charge extraction losses at interfaces between the perovskite absorber and the charge-transport layers. Here, in situ back-contact passivation (BCP) that reduces interfacial and extraction losses between the perovskite absorber and the hole transport layer (HTL) is reported. A thin layer of nondoped semiconducting polymer at the perovskite/HTL interface is introduced and it is shown that the use of the semiconductor polymer permits-in contrast with previously studied insulator-based passivants-the use of a relatively thick passivating layer.
View Article and Find Full Text PDFQuantum dots (QDs) are promising candidates for solution-processed thin-film optoelectronic devices. Both the diffusion length and the mobility of photoexcited charge carriers in QD solids are critical determinants of solar cell performance; yet various techniques offer diverse values of these key parameters even in notionally similar films. Here we report diffusion lengths and interdot charge transfer rates using a 3D donor/acceptor technique that directly monitors the rate at which photoexcitations reach small-bandgap dot inclusions having a known spacing within a larger-bandgap QD matrix.
View Article and Find Full Text PDFThe best-performing colloidal-quantum-dot (CQD) photovoltaic devices suffer from charge recombination within the quasi-neutral region near the back hole-extracting junction. Graded architectures, which provide a widened depletion region at the back junction of device, could overcome this challenge. However, since today's best materials are processed using solvents that lack orthogonality, these architectures have not yet been implemented using the best-performing CQD solids.
View Article and Find Full Text PDFAs crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead sulfide colloidal quantum dot (CQD) ensembles to maximize short-circuit current and open-circuit voltage simultaneously. We engineer the density of states to achieve simultaneously a large quasi-Fermi level splitting and a tailored optical response that matches the infrared solar spectrum.
View Article and Find Full Text PDF