Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive.
View Article and Find Full Text PDFTardigrada is an ecdysozoan lineage famed for its resilience. Tardigrades can tolerate high doses of radiation, low-oxygen environments, desiccation, and both high and low temperatures under a dormant state called "anhydrobiosis", which is a reversible halt of metabolism upon almost complete desiccation. A large amount of research has focused on the genetic pathways related to these capabilities, and a number of genes have been identified and linked to the extremotolerant response of tardigrades.
View Article and Find Full Text PDFThe availability of phylogenetic data has greatly expanded in recent years. As a result, a new era in phylogenetic analysis is dawning-one in which the methods we use to analyse and assess our data are the bottleneck to producing valuable phylogenetic hypotheses, rather than the need to acquire more data. This makes the ability to accurately appraise and evaluate new methods of phylogenetic analysis and phylogenetic artefact identification more important than ever.
View Article and Find Full Text PDFMotivation: Compositional heterogeneity-when the proportions of nucleotides and amino acids are not broadly similar across the dataset-is a cause of a great number of phylogenetic artefacts. Whilst a variety of methods can identify it post-hoc, few metrics exist to quantify compositional heterogeneity prior to the computationally intensive task of phylogenetic tree reconstruction. Here we assess the efficacy of one such existing, widely used, metric: Relative Composition Frequency Variability (RCFV), using both real and simulated data.
View Article and Find Full Text PDFTanaidaceans are small benthic crustaceans that mainly inhabit diverse marine environments, and they comprise one of the most diverse and abundant macrofaunal groups in the deep sea. Tanaidacea is one of the most thread-dependent taxa in the Crustacea, constructing tubes, spun with their silk, for shelter. In this work, we sequenced and assembled the comprehensive transcriptome of 23 tanaidaceans encompassing 14 families and 4 superfamilies of Tanaidacea, and performed silk proteomics of Zeuxo ezoensis to search for its silk genes.
View Article and Find Full Text PDFMolecular genetic data have recently been incorporated in attempts to reconstruct the ecology of the ancestral snake, though this has been limited by a paucity of data for one of the two main extant snake taxa, the highly fossorial Scolecophidia. Here we present and analyze vision genes from the first eye-transcriptomic and genome-wide data for Scolecophidia, for Anilios bicolor, and A. bituberculatus, respectively.
View Article and Find Full Text PDFOpsins are light-sensitive proteins involved in many photoreceptive processes, including, but not limited to, vision and regulation of circadian rhythms. Arthropod (e.g.
View Article and Find Full Text PDFOur ability to correctly reconstruct a phylogenetic tree is strongly affected by both systematic errors and the amount of phylogenetic signal in the data. Current approaches to tackle tree reconstruction artifacts, such as the use of parameter-rich models, do not translate readily to single-gene alignments. This, coupled with the limited amount of phylogenetic information contained in single-gene alignments, makes gene trees particularly difficult to reconstruct.
View Article and Find Full Text PDFThe relationships of crustaceans and hexapods (Pancrustacea) have been much discussed and partially elucidated following the emergence of phylogenomic data sets. However, major uncertainties still remain regarding the position of iconic taxa such as Branchiopoda, Copepoda, Remipedia, and Cephalocarida, and the sister group relationship of hexapods. We assembled the most taxon-rich phylogenomic pancrustacean data set to date and analyzed it using a variety of methodological approaches.
View Article and Find Full Text PDFColour vision is known to have arisen only twice-once in Vertebrata and once within the Ecdysozoa, in Arthropoda. However, the evolutionary history of ecdysozoan vision is unclear. At the molecular level, visual pigments, composed of a chromophore and a protein belonging to the opsin family, have different spectral sensitivities and these mediate colour vision.
View Article and Find Full Text PDFMorphological data provide the only means of classifying the majority of life's history, but the choice between competing phylogenetic methods for the analysis of morphology is unclear. Traditionally, parsimony methods have been favoured but recent studies have shown that these approaches are less accurate than the Bayesian implementation of the Mk model. Here we expand on these findings in several ways: we assess the impact of tree shape and maximum-likelihood estimation using the Mk model, as well as analysing data composed of both binary and multistate characters.
View Article and Find Full Text PDF