Publications by authors named "James F Decarolis"

Nine different membrane bioreactor (MBR) systems with different process configurations (submerged and external), membrane geometries (hollow-fiber, flat-sheet, and tubular), membrane materials (polyethersulfone (PES), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE)) and membrane nominal pore sizes (0.03-0.2 μm) were evaluated to assess the impact of influent microbial concentration, membrane pore size and membrane material and geometries on removal of microbial indicators by MBR technology.

View Article and Find Full Text PDF

A pilot study was conducted over a period of 18 months at the Point Loma Wastewater Treatment Plant (PLWWTP) in San Diego, CA to evaluate the operational and water quality performance of six selected membrane bioreactor (MBR) systems at average and peak flux operation. Each of these systems was operated at peak flux for 4 h a day for six consecutive days to assess peak flux performance. Virus seeding studies were also conducted during peak flux operation to assess the capability of these systems to reject MS-2 coliphage.

View Article and Find Full Text PDF

Four commercially available membrane bioreactor (MBR) systems were operated at the pilot scale, to investigate performance during the reclamation of municipal wastewater. The MBR performance was evaluated under a variety of operating conditions, including two types of feed wastewater (raw and advanced primary effluent), hydraulic retention times (HRTs) ranging from 2 to 6 hours, and permeate fluxes between 20 and 41 lmh. Test results showed that MBR systems were capable of operating on advanced primary effluent, despite the possible presence of coagulant and/or polymer residual, with minimal membrane fouling.

View Article and Find Full Text PDF