Publications by authors named "James F Collins"

Background: Iron plays a crucial role through various life stages of human. Iron homeostasis is primarily regulated by iron absorption which is mediated via divalent metal-ion transporter 1 (DMT1), and iron export protein ferroportin (FPN), as there is no active pathway for iron excretion from the body. Recent studies have shown that the magnitude of iron absorption changes through various life stages to meet changing iron requirements.

View Article and Find Full Text PDF

β-thalassemia is an iron-loading anemia caused by homozygous mutation of the hemoglobin subunit β (HBB) gene. In β-thalassemia intermedia (βTI), a non-transfusion-dependent form of the disease, iron overload is caused by excessive absorption of dietary iron due to inappropriately low production of the iron-regulatory hormone hepcidin. Low hepcidin stabilizes the iron exporter ferroportin (FPN) on the basolateral membrane of enterocytes.

View Article and Find Full Text PDF
Article Synopsis
  • * The body regulates iron levels through intestinal absorption, as excretion is inefficient; aging can disrupt this balance, leading to deficiencies or excess iron.
  • * Regular assessment of iron status and adherence to daily intake guidelines is crucial for older adults to maintain healthy iron levels and minimize health risks.
View Article and Find Full Text PDF

Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.

View Article and Find Full Text PDF

Assessing gastrointestinal motility lacks simultaneous evaluation of intraluminal pressure (ILP), circular muscle (CM) and longitudinal muscle (LM) contraction, and lumen emptying. In this study, a sophisticated machine was developed that synchronized real-time recordings to quantify the intricate interplay between CM and LM contractions, and their timings for volume changes using high-resolution cameras with machine learning capability, the ILP using pressure transducers and droplet discharge (DD) using droplet counters. Results revealed four distinct phases, B, N, D, and A, distinguished by pressure wave amplitudes.

View Article and Find Full Text PDF

Adipose plasticity is critical for metabolic homeostasis. Adipocyte transdifferentiation plays an important role in adipose plasticity, but the molecular mechanism of transdifferentiation remains incompletely understood. Here we show that the transcription factor FoxO1 regulates adipose transdifferentiation by mediating Tgfβ1 signaling pathway.

View Article and Find Full Text PDF

Pregnancy rates in β-thalassemia are increasing but the risk of complications is higher; thus, better understanding of maternal and fetal iron homeostasis in this disorder is needed. HbbTh3/+ (Th3/+) mice model human β-thalassemia. Both the murine and human diseases are characterized by low hepcidin, high iron absorption, and tissue iron overload, with concurrent anemia.

View Article and Find Full Text PDF

The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain.

View Article and Find Full Text PDF

Iron-deficiency anemia is common worldwide and typically treated by oral iron supplementation. Excess enteral iron, however, may cause pathological outcomes. Developing new repletion approaches is thus warranted.

View Article and Find Full Text PDF

Mucosal damage, barrier breach, inflammation, and iron-deficiency anemia (IDA) typify ulcerative colitis (UC) in humans. The anemia in UC appears to mainly relate to systemic inflammation. The pathogenesis of this 'anemia of inflammation' (AI) involves cytokine-mediated transactivation of hepatic Hamp (encoding the iron-regulatory hormone, hepcidin).

View Article and Find Full Text PDF

The essential trace mineral copper plays important roles in human physiology and pathophysiology. Disruption of copper homeostasis may underlie the development of ischemic heart disease, and connective tissue and neurodegenerative disorders. Copper also likely participates in the host response to bacterial infection and is further implicated more broadly in regulating immunity.

View Article and Find Full Text PDF

Intestinal iron transport requires an iron importer (Dmt1) and an iron exporter (Fpn1). The hormone hepcidin regulates iron absorption by modulating Fpn1 protein levels on the basolateral surface of duodenal enterocytes. In the genetic, iron-loading disorder hereditary hemochromatosis (HH), hepcidin production is low and Fpn1 protein expression is elevated.

View Article and Find Full Text PDF

The nicotianamine-iron chelate [NA-Fe], which is found in many plant-based foods, has been recently described as a new form of bioavailable iron in mice and chickens. How NA-Fe is assimilated from the diet, however, remains unclear. The current investigation by Murata et al.

View Article and Find Full Text PDF

Physiologically relevant iron-copper interactions have been frequently documented. For example, excess enteral iron inhibits copper absorption in laboratory rodents and humans. Whether this also occurs during pregnancy and lactation, when iron supplementation is frequently recommended, is, however, unknown.

View Article and Find Full Text PDF

Synthetic nanoparticle-based drug delivery system is widely known for its ability to increase the efficacy and specificity of loaded drugs, but it often suffers from relatively higher immunotoxicity and higher costs as compared to traditional drug formulations. Contrarily, plant-derived nanoparticles appear to be free from these limitations of synthetic nanoparticles; they are naturally occurring biocompatible vesicles that do not generate immunotoxicity and are easy to obtain. Additionally, lipids isolated from plant-derived nanoparticles have shown the capability of assembling themselves to spherical nano-sized liposomal particles.

View Article and Find Full Text PDF

Research on the interplay between iron and copper metabolism in humans began to flourish in the mid-20th century, and diseases associated with dysregulated homeostasis of these essential trace minerals are common even today. Iron deficiency is the most frequent cause of anemia worldwide, leading to significant morbidity, particularly in developing countries. Iron overload is also quite common, usually being the result of genetic mutations which lead to inappropriate expression of the iron-regulatory hormone hepcidin.

View Article and Find Full Text PDF

Hinokitiol, a natural lipophilic chelator, appears capable of replacing several iron transporters after they have been genetically ablated. Divalent metal-ion transporter (DMT1) is the major iron importer in enterocytes and erythroblasts. We have compared DMT1 and hinokitiol in multiple fashions to learn if the smaller molecule is a suitable substitute using two HEK293 cell lines engineered to overexpress different isoforms of DMT1.

View Article and Find Full Text PDF

Nanoparticles (NPs) have been utilized to deliver drugs to the intestinal epithelium in vivo. Moreover, NPs derived from edible plants are less toxic than synthetic NPs. Here, we utilized ginger NP-derived lipid vectors (GDLVs) in a proof-of-concept investigation to test the hypothesis that inhibiting expression of divalent metal-ion transporter 1 (Dmt1) would attenuate iron loading in a mouse model of hereditary hemochromatosis (HH).

View Article and Find Full Text PDF

Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism.

View Article and Find Full Text PDF

Background: Divalent metal-ion transporter 1 (DMT1) may transport copper, but studies to date on this topic have been equivocal. Previously, an ex vivo experiment showed that intestinal copper transport was impaired in Dmt1-mutant Belgrade rats.

Objective: In this study, we tested the hypothesis that intestinal DMT1 transports copper in vivo.

View Article and Find Full Text PDF

Dietary iron overload in rodents impairs growth and causes cardiac hypertrophy, serum and tissue copper depletion, depression of serum ceruloplasmin (Cp) activity and anemia. Notably, increasing dietary copper content to ~25-fold above requirements prevents the development of these physiological perturbations. Whether copper supplementation can reverse these high-iron-related abnormalities has, however, not been established.

View Article and Find Full Text PDF