Publications by authors named "James Edwards-Smallbone"

In the early-diverging protozoan parasite , few telomere-binding proteins have been identified and several are unique. telomeres, like those of most eukaryotes, contain guanine-rich repeats that can form G-quadruplex structures. In model systems, quadruplex-binding drugs can disrupt telomere maintenance and some quadruplex-binding drugs are potent anti-plasmodial agents.

View Article and Find Full Text PDF

An extended multilocus sequence analysis (MLSA) scheme applicable to the , an expanding genus that includes zoonotic pathogens that severely impact animal and human health across large parts of the globe, was developed. The scheme, which extends a previously described nine locus scheme by examining sequences at 21 independent genetic loci in order to increase discriminatory power, was applied to a globally and temporally diverse collection of over 500 isolates representing all 12 known species providing an expanded and detailed understanding of the population genetic structure of the group. Over 100 sequence types (STs) were identified and analysis of data provided insights into both the global evolutionary history of the genus, suggesting that early emerging lineages might be confined to Africa while some later lineages have spread worldwide, and further evidence of the existence of lineages with restricted host or geographical ranges.

View Article and Find Full Text PDF

Acanthamoeba granulomatous encephalitis (AGE), caused by Acanthamoeba castellanii, is a fatal infection of immunocompromised individuals. The pathogenesis of blood-brain barrier (BBB) breach remains unknown. Using a novel in vitro BBB infection model under flow conditions, demonstrates that increases in flow rates lead to decreased binding of A.

View Article and Find Full Text PDF

Transmigration of neuropathogens across the blood-brain barrier is a key step in the development of central nervous system infections, making it a prime target for drug development. The ability of neuropathogens to traverse the blood-brain barrier continues to inspire researchers to understand the specific strategies and molecular mechanisms that allow them to enter the brain. The availability of models of the blood-brain barrier that closely mimic the situation in vivo offers unprecedented opportunities for the development of novel therapeutics.

View Article and Find Full Text PDF

Two novel molecular assays, 'Bruce-ladder' and SNP typing, have recently been described designed to differentiate isolates of the genus Brucella, causative organisms of the significant zoonotic disease brucellosis, at the species level. Differentiation of Brucella canis from Brucella suis by molecular approaches can be difficult and here we compare the performance of 'Bruce-ladder' and SNP typing in correctly identifying B. canis isolates.

View Article and Find Full Text PDF

Cercomonads (=Cercomonadida) are biflagellate gliding bacterivorous protozoa, abundant and diverse in soil and freshwater. We establish 56 new species based on 165 cultures, differential interference contrast microscopy, and 18S and ITS2 rDNA sequencing, and a new genus Cavernomonas studied by scanning electron microscopy. We fundamentally revise the phylogeny and classification of cercomonad Cercozoa.

View Article and Find Full Text PDF