This study investigated the spatio-temporal variability of microplastics (MPs) in the sediments of the River Thames (UK) catchment over 30 months (July 2019 - Dec 2021). The average MP concentration was 61 items kg d.w.
View Article and Find Full Text PDFPhages, such as those infecting spp., have been proven to be reliable indicators of human fecal contamination in microbial source tracking (MST) studies, and the efficacy of these MST markers found to vary geographically. This study reports the application and evaluation of candidate MST methods (phages infecting previously isolated strain GB-124, newly isolated strains (K10, K29, and K33) and recently isolated strain ASH-08), along with non-source specific somatic coliphages (SOMCPH infecting strain WG-5) and indicator bacteria () for identifying fecal contamination pathways in Kolkata, India.
View Article and Find Full Text PDFspp. are part of the human intestinal microbiota but can under some circumstances become clinical pathogens. Phages are a potentially valuable therapeutic treatment option for many pathogens, but phage therapy for pathogenic spp.
View Article and Find Full Text PDFBackground: Emerging evidence suggests close domestic proximity of livestock and humans may lead to microbiological contamination of hands, objects, food and water supplies within domestic environments, adversely impacting public health. However, evidence quantifying the relationship between livestock, domestic animals, humans and microbiological contamination of household stored water remains limited.
Aim: This longitudinal study aimed to examine the relationship between domestic contact with livestock and domestic animals on microbiological contamination of household Point-of-Use (POU) stored drinking water in rural Kenya and assess the influence of choice of faecal indicator on such associations.
Water deficit, exacerbated by global population increases and climate change, necessitates the investigation of alternative non-traditional water sources to augment existing supplies. Indirect potable reuse (IPR) represents a promising alternative water source in water-stressed regions. Of high concern is the presence of pathogenic microorganisms in wastewater, such as enteric viruses, protozoa and bacteria.
View Article and Find Full Text PDFUp to 80% of the plastics in the oceans are believed to have been transferred from river networks. Microplastic contamination of river sediments has been found to be pervasive at the global scale and responsive to periods of flooding. However, the physical controls governing the storage, remobilization and pathways of transfer in fluvial sediments are unknown.
View Article and Find Full Text PDFBackground: Water scarcity combined with high incidences of diarrhoeal disease amongst many rural communities, suggests that the provision of 'safe' water supplies remains a challenge. Subsequent reliance on multi-source water supplies means that microbial transmission pathways may be numerous and complex.
Objectives: This study aimed to identify and elucidate water supply issues and potential microbial transmission pathways at the household level in rural communities in semi-arid Brazil.
Ebola and cholera treatment centres (ETC and CTC) generate considerable quantities of excreta that can further the transmission of disease amongst patients and health workers. Therefore, approaches for the safe handling, containment and removal of excreta within such settings are needed to minimise the likelihood of onward disease transmission. This study compared the performance and suitability of three chlorine-based approaches (0.
View Article and Find Full Text PDFNumerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents.
View Article and Find Full Text PDFJust as the expansion in genome sequencing has revealed and permitted the exploitation of phylogenetic signals embedded in bacterial genomes, the application of metagenomics has begun to provide similar insights at the ecosystem level for microbial communities. However, little is known regarding this aspect of bacteriophage associated with microbial ecosystems, and if phage encode discernible habitat-associated signals diagnostic of underlying microbiomes. Here we demonstrate that individual phage can encode clear habitat-related 'ecogenomic signatures', based on relative representation of phage-encoded gene homologues in metagenomic data sets.
View Article and Find Full Text PDFMany wastewater treatment technologies have been shown to remove bacterial pathogens more effectively than viral pathogens and, in aquatic environments, levels of traditional faecal indicator bacteria (FIB) do not appear to correlate consistently with levels of human viral pathogens. There is, therefore, a need for novel viral indicators of faecal pollution and surrogates of viral pathogens, especially given the increasing importance of indirect and direct wastewater reuse. Potential candidates include bacteriophages (phages) and the study described here sought to elucidate the relationship between three groups of phages (somatic coliphages (SOMPH), F-RNA coliphages (F-RNAPH) and human-specific phages infecting B.
View Article and Find Full Text PDFThe aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period.
View Article and Find Full Text PDFThe operation of a health care facility, such as a cholera or Ebola treatment center in an emergency setting, results in the production of pathogen-laden wastewaters that may potentially lead to onward transmission of the disease. The research presented here evaluated the design and operation of a novel treatment system, successfully used by Médecins Sans Frontières in Haiti to disinfect CTC wastewaters in situ, eliminating the need for road haulage and disposal of the waste to a poorly-managed hazardous waste facility, thereby providing an effective barrier to disease transmission through a novel but simple sanitary intervention. The physico-chemical protocols eventually successfully treated over 600 m3 of wastewater, achieving coagulation/flocculation and disinfection by exposure to high pH (Protocol A) and low pH (Protocol B) environments, using thermotolerant coliforms as a disinfection efficacy index.
View Article and Find Full Text PDFThis study proposes that calculating and interpreting removal coefficients (K20) for bacteriophages in activated sludge (AS) and trickling filter (TF) systems using stochastic modelling may provide important information that may be used to estimate the removal of phages in such systems using simplified models. In order to achieve this, 14 samples of settled wastewater and post-secondary sedimentation wastewater were collected every 2 weeks, over a 6-month period (May to November), from two AS and two TF systems situated in southern England. Initial results have demonstrated that the removal of somatic coliphages in both AS and TF systems is considerably higher than that of F-RNA coliphages, and that AS more effectively removes both phage groups than TF.
View Article and Find Full Text PDFThe aim of this study was to assess the potential removal efficacy of viruses in a full-scale membrane bioreactor (MBR) wastewater reuse system, using a range of indigenous and 'spiked' bacteriophages (phages) of known size and morphology. Samples were taken each week for three months from nine locations at each treatment stage of the water recycling plant (WRP) and tested for a range of microbiological parameters (n = 135). Mean levels of faecal coliforms were reduced to 0.
View Article and Find Full Text PDFPhotochem Photobiol
July 2015
Ultraviolet-B radiation (280-320 nm) has long been associated with the inactivation of microorganisms in the natural environment. Determination of the environmental inactivation kinetics of specific indicator organisms [used as tools in the field of microbial source tracking (MST)] is fundamental to their successful deployment, particularly in geographic regions subject to high levels of solar radiation. Phage infecting Bacteroides fragilis host strain GB124 (B124 phage) have been demonstrated to be highly specific indicators of human fecal contamination, but to date, little is known about their susceptibility to UV-B radiation.
View Article and Find Full Text PDFBacterial viruses (bacteriophages) have a key role in shaping the development and functional outputs of host microbiomes. Although metagenomic approaches have greatly expanded our understanding of the prokaryotic virosphere, additional tools are required for the phage-oriented dissection of metagenomic data sets, and host-range affiliation of recovered sequences. Here we demonstrate the application of a genome signature-based approach to interrogate conventional whole-community metagenomes and access subliminal, phylogenetically targeted, phage sequences present within.
View Article and Find Full Text PDFAn inter-laboratory study of the accuracy of microbial source tracking (MST) methods was conducted using challenge fecal and sewage samples that were spiked into artificial freshwater and provided as unknowns (blind test samples) to the laboratories. The results of the Source Identification Protocol Project (SIPP) are presented in a series of papers that cover 41 MST methods. This contribution details the results of the virus and bacteriophage methods targeting human fecal or sewage contamination.
View Article and Find Full Text PDFNumerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents.
View Article and Find Full Text PDFBacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14).
View Article and Find Full Text PDFWhile natural products or their derivatives and mimics have contributed around 50% of current drugs, there has been no approach allowing front-loading of chemical space compliant with lead- and drug-like properties. The importance of physicochemical properties of molecules in the development of orally bioavailable drugs has been recognized. Classical natural product drug discovery has only been able to undertake this analysis retrospectively after compounds are isolated and structures elucidated.
View Article and Find Full Text PDFEnviron Sci Technol
January 2012
Current fecal indicator bacteria (FIB) and emerging microbial source tracking (MST) methods may indicate the presence and even the likely source of water contamination, but they are less effective at determining the potential risk to health from human enteric viruses. This paper investigates the presence of human-specific phages (detected using a low-cost MST method) in municipal wastewaters (MW) and assesses whether they may be used effectively to screen for the likely presence of human adenovirus (HAdV) and norovirus (NoV). The findings demonstrated that all samples positive for HAdV and/or NoV also contained phages infecting Bacteroides GB-124 (mean = 4.
View Article and Find Full Text PDFEnviron Sci Technol
December 2011
This paper describes the isolation of Enterococcus host strains, for potential use as simple bacteriophage (phage)-based microbial source tracking (MST) tools. Presumptive Enterococcus host strains were isolated from cattle feces, raw municipal wastewater, agricultural runoff, and waters impacted by farms or wastewater treatment works (WWTW) in southern England, United Kingdom (UK). All enterococcal host strains (n = 390) were first screened for their ability to detect phage in samples of raw municipal wastewater and fecal material from cattle, pigs, and sheep.
View Article and Find Full Text PDFIn many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment.
View Article and Find Full Text PDFPrevious studies have shown that Escherichia coli and enterococci are unreliable indicators of fecal contamination in Hawaii because of their ability to multiply in environmental soils. In this study, the method of detecting Bacteroides phages as specific markers of sewage contamination in Hawaii's recreational waters was evaluated because these sewage specific phages cannot multiply under environmental conditions. Bacteroides hosts (GB-124, GA-17), were recovered from sewage samples in Europe and were reported to be effective in detecting phages from sewage samples obtained in certain geographical areas.
View Article and Find Full Text PDF