Publications by authors named "James E Thomas"

Microbiological surveillance of the food chain plays a critical role in improving our understanding of the distribution and circulation of food-borne pathogens along the farm to fork continuum toward the development of interventions to reduce the burden of illness. The application of molecular subtyping to bacterial isolates collected through surveillance has led to the identification of strains posing the greatest risk to public health. Past evidence suggests that enrichment methods for , a leading bacterial foodborne pathogen worldwide, may lead to the differential recovery of subtypes, obscuring our ability to infer the composition of a mixed-strain sample and potentially biasing prevalence estimates in surveillance data.

View Article and Find Full Text PDF

is a leading human enteric pathogen worldwide and despite an improved understanding of its biology, ecology, and epidemiology, limited tools exist for identifying strains that are likely to cause disease. In the current study, we used subtyping data in a database representing over 24,000 isolates collected through various surveillance projects in Canada to identify 166 representative genomes from prevalent subtypes for whole genome sequencing. The sequence data was used in a genome-wide association study (GWAS) aimed at identifying accessory gene markers associated with clinically related subtypes.

View Article and Find Full Text PDF

A fundamental assumption in the use and interpretation of microbial subtyping results for public health investigations is that isolates that appear to be related based on molecular subtyping data are expected to share commonalities with respect to their origin, history, and distribution. Critically, there is currently no approach for systematically assessing the underlying epidemiology of subtyping results. Our aim was to develop a method for directly quantifying the similarity between bacterial isolates using basic sampling metadata and to develop a framework for computing the epidemiological concordance of microbial typing results.

View Article and Find Full Text PDF

Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E.

View Article and Find Full Text PDF

In regions where animal agriculture is prominent, such as southern Alberta, higher rates of gastrointestinal illness have been reported when compared with nonagricultural regions. This difference in the rate of illness is thought to be a result of increased zoonotic pathogen exposure through environmental sources such as water. In this study, temporal and spatial factors associated with bacterial pathogen contamination of the Oldman River, which transverses this region, were analyzed using classification and regression tree analysis.

View Article and Find Full Text PDF

Campylobacter spp. are a leading cause of bacterial gastroenteritis worldwide. The need for molecular subtyping methods with enhanced discrimination in the context of surveillance- and outbreak-based epidemiologic investigations of Campylobacter spp.

View Article and Find Full Text PDF

The pan-genome of a taxonomic group consists of evolutionarily conserved core genes shared by all members and accessory genes that are present only in some members of the group. Group- and subgroup-specific core genes are thought to contribute to shared phenotypes such as virulence and niche specificity. In this study we analyzed 39 Salmonella enterica genomes (16 closed, 23 draft), a species that contains two human-specific serovars that cause typhoid fever, as well as a large number of zoonotic serovars that cause gastroenteritis in humans.

View Article and Find Full Text PDF

The sum of unique genes in all genomes of a bacterial species is referred to as the pan-genome and is comprised of variably absent or present accessory genes and universally present core genes. The accessory genome is an important source of genetic variability in bacterial populations, allowing sub-populations of bacteria to better adapt to specific niches. Such subgroups may themselves have a relatively stable core genome that may influence host preference, virulence, or an association with specific disease syndromes.

View Article and Find Full Text PDF

Many plants used as functional foods or for medicinal purposes have been criticized for their inconsistent physiological effects. Variation in genotype and environmental conditions under which plants are produced can contribute to this inconsistency in biochemical composition. Fenugreek (Trigonella foenum-graecum L.

View Article and Find Full Text PDF

Background: The pan-genome of a bacterial species consists of a core and an accessory gene pool. The accessory genome is thought to be an important source of genetic variability in bacterial populations and is gained through lateral gene transfer, allowing subpopulations of bacteria to better adapt to specific niches. Low-cost and high-throughput sequencing platforms have created an exponential increase in genome sequence data and an opportunity to study the pan-genomes of many bacterial species.

View Article and Find Full Text PDF

In this study, we wished to assess the prevalence and determine the sources of three zoonotic bacterial pathogens (Salmonella, Campylobacter, and Escherichia coli O157:H7) in the Salmon River watershed in southwestern British Columbia. Surface water, sewage, and animal faecal samples were collected from the watershed. Selective bacterial culture and PCR techniques were used to isolate these three pathogens and indicator bacteria from these samples and characterize them.

View Article and Find Full Text PDF

Escherichia coli O157:H7 strains fall into three major genetic lineages that differ in their distribution among humans and cattle. Several recent studies have reported differences in the expression of virulence factors between E. coli O157:H7 strains from these two host species.

View Article and Find Full Text PDF

Background: Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH).

View Article and Find Full Text PDF

Enterohemorrhagic Escherichia coli O157:H7 has evolved into an important human pathogen with cattle as the main reservoir. The recent discovery of E. coli O157:H7-induced pathologies in challenged cattle has suggested that previously discounted bacterial virulence factors may contribute to the colonization of cattle.

View Article and Find Full Text PDF

Bacterial infection has been associated with several malignancies, yet the exact mechanism of infection-associated carcinogenesis remains obscure. Furthermore, it is still not clear whether oncontransformation requires an active infection process, or merely the presence of inactivated bacteria remnants is enough to cause deleterious effects. Here, we analyzed whether or not consumption of non-pathogenic and pathogenic heat-killed Escherichia coli leads to changes in genome stability in somatic tissues of exposed animals.

View Article and Find Full Text PDF

In this study, variably absent or present (VAP) regions discovered through comparative genomics experiments were targeted for the development of a rapid, PCR-based method to subtype and fingerprint Escherichia coli O157:H7. Forty-four VAP loci were analyzed for discriminatory power among 79 E. coli O157:H7 strains of 13 phage types (PT).

View Article and Find Full Text PDF

Thrombin cleavages of selective proteinase-activated receptors (PAR) as well as PAR-activating peptide ligands can initiate the phosphoinositide 3-kinase (PI3K) signaling cascade in platelets. Downstream to this event, fibrinogen receptors on platelets undergo conformational changes that enhance fibrinogen binding. In our study, we used this phenomenon as a surrogate biomarker for assessing effects on PI3K activity.

View Article and Find Full Text PDF

Although AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is a central member of possibly the most frequently activated proliferation and survival pathway in cancer, mutation of AKT1 has not been widely reported. Here we report the identification of a somatic mutation in human breast, colorectal and ovarian cancers that results in a glutamic acid to lysine substitution at amino acid 17 (E17K) in the lipid-binding pocket of AKT1. Lys 17 alters the electrostatic interactions of the pocket and forms new hydrogen bonds with a phosphoinositide ligand.

View Article and Find Full Text PDF

Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated.

View Article and Find Full Text PDF

The Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositides. Although closely related, experimental evidence suggests that the four Class I PI3Ks may be functionally distinct. To further study their unique biochemical properties, the three human Class Ia PI3K (alpha, beta, and delta) p110 catalytic domains were cloned and co-expressed with the p85alpha regulatory domain in Sf9 cells.

View Article and Find Full Text PDF

Phospholipase A2 (PLA2) enzymes release arachidonic acid from cellular phospholipids in a variety of mammalian tissues, including prostate. Group IIa secretory PLA2 (sPLA2) can generate arachidonate from cellular phospholipids. We examined the group IIa sPLA2 expression in benign prostatic tissues, prostatic intraepithelial neoplasia (PIN), and adenocarcinoma to determine whether sPLA2 expression is altered in the carcinogenesis of human prostatic cancer.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1crfjsb3qaus8cf3d4jcnaa7lunvkefd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once