Globally, over 200 million people are chronically exposed to arsenic (As) and/or manganese (Mn) from drinking water. We used machine-learning (ML) boosted regression tree (BRT) models to predict high As (>10 μg/L) and Mn (>300 μg/L) in groundwater from the glacial aquifer system (GLAC), which spans 25 states in the northern United States and provides drinking water to 30 million people. Our BRT models' predictor variables (PVs) included recently developed three-dimensional estimates of a suite of groundwater age metrics, redox condition, and pH.
View Article and Find Full Text PDFA boosted regression tree model was developed to predict pH conditions in three dimensions throughout the glacial aquifer system of the contiguous United States using pH measurements in samples from 18,386 wells and predictor variables that represent aspects of the hydrogeologic setting. Model results indicate that the carbonate content of soils and aquifer materials strongly controls pH and, when coupled with long flowpaths, results in the most alkaline conditions. Conversely, in areas where glacial sediments are thin and carbonate-poor, pH conditions remain acidic.
View Article and Find Full Text PDFChemical data from 43 334 wells were used to examine the role of land surface-soil-aquifer connections in producing elevated manganese concentrations (>300 μg/L) in United States (U.S.) groundwater.
View Article and Find Full Text PDF