Phage display technology has emerged into a powerful tool for identifying proteins with specific binding properties. This technology adds amino acid sequences to the carboxy terminus of a phage capsid protein, thus generating a fusion protein displayed on the surface of the phage. Here, we have developed a high-throughput strategy to synthesize purified protein that solves many of the problems associated with crude phage lysates.
View Article and Find Full Text PDFCultured human fibroblasts from patients with the Li-Fraumeni syndrome (LFS) containing heterozygous germline p53 mutations develop genomic instability, loss of the wild-type p53 allele, and immortalize at a low frequency. Since genomic instability and phenotypic change are observed in presenescent cells without specific exposure to mutagens, we hypothesized that reactive oxygen species (ROS) produced during normal cell metabolism coupled with deficient p53 dependent DNA damage repair pathways make a significant contribution to immortalization related parameters. To test this hypothesis, three LFS cell strains (MDAH087, MDAH041, and MDAH172) were exposed to five compounds with demonstrated antioxidant properties for > or =85% of their proliferative lifetimes.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
January 2006
Type 1 neurofibromatosis (NF1) is a common autosomal dominant disorder that results in neuroectodermal tumors. The NF1 tumor-suppressor gene encodes neurofibromin, which includes a GTPase-activating domain for Ras inactivation. Affinity purification showed N-Ras to be the predominant activated isoform of Ras in two independent neurofibrosarcoma cell lines from NF1 patients (lines ST88-14 and NF90-8).
View Article and Find Full Text PDFStudies of yeast have shown that the SIR2 gene family is involved in chromatin structure, transcriptional silencing, DNA repair, and control of cellular life span. Our functional studies of human SIRT2, a homolog of the product of the yeast SIR2 gene, indicate that it plays a role in mitosis. The SIRT2 protein is a NAD-dependent deacetylase (NDAC), the abundance of which increases dramatically during mitosis and is multiply phosphorylated at the G(2)/M transition of the cell cycle.
View Article and Find Full Text PDF