Methanogenic archaea are chemolithotrophic prokaryotes that can reduce carbon dioxide with hydrogen gas to form methane. These microorganisms make a significant contribution to the global carbon cycle, with methanogenic archaea from anoxic environments estimated to contribute > 500 million tons of global methane annually. Archaeal methanogenesis is dependent on the methanofurans; aminomethylfuran containing coenzymes that act as the primary C acceptor molecule during carbon dioxide fixation.
View Article and Find Full Text PDFThe abyssomicins are a structurally intriguing family of bioactive natural products that include compounds with potent antibacterial, antitumour and antiviral activities. The biosynthesis of the characteristic abyssomicin spirotetronate core occurs an enzyme-catalysed intramolecular Diels-Alder reaction, which proceeds one of two distinct stereochemical pathways to generate products differing in configuration at the C15 spirocentre. Using the purified spirotetronate cyclases AbyU (from abyssomicin C/atrop-abyssomicin C biosynthesis) and AbmU (from abyssomicin 2/neoabyssomicin biosynthesis), in combination with synthetic substrate analogues, here we show that stereoselectivity in the spirotetronate-forming [4 + 2]-cycloaddition is controlled by a combination of factors attributable to both the enzyme and substrate.
View Article and Find Full Text PDFSponges (phylum Porifera) harbour specific microbial communities that drive the ecology and evolution of the host. Understanding the structure and dynamics of these communities is emerging as a primary focus in marine microbial ecology research. Much of the work to date has focused on sponges from warm and shallow coastal waters, while sponges from the deep ocean remain less well studied.
View Article and Find Full Text PDFThe Diels-Alder reaction is one of the most effective methods for the synthesis of substituted cyclohexenes. The development of protein catalysts for this reaction remains a major priority, affording new sustainable routes to high value target molecules. Whilst a small number of natural enzymes have been shown capable of catalysing [4 + 2] cycloadditions, there is a need for significant mechanistic understanding of how these prospective Diels-Alderases promote catalysis to underpin their development as biocatalysts for use in synthesis.
View Article and Find Full Text PDFThe deep sea is known to host novel bacteria with the potential to produce a diverse array of undiscovered natural products. Thus, understanding these bacteria is of broad interest in ecology and could also underpin applied drug discovery, specifically in the area of antimicrobials. Here, we isolate a new strain of from the tissue of the deep-sea sponge collected at a depth of 1869 m from the Gramberg Seamount in the Atlantic Ocean.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
January 2023
Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C.
View Article and Find Full Text PDFAbyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C.
View Article and Find Full Text PDFTo tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition.
View Article and Find Full Text PDFNatural products have traditionally been discovered through the screening of culturable microbial isolates from diverse environments. The sequencing revolution allowed the identification of dozens of biosynthetic gene clusters (BGCs) within single bacterial genomes, either from cultured or uncultured strains. However, we are still far from fully exploiting the microbial reservoir, as most of the species are non-model organisms with complex regulatory systems that can be recalcitrant to engineering approaches.
View Article and Find Full Text PDFPolyketides are a structurally and functionally diverse family of bioactive natural products that have proven to be a rich source of pharmaceutical and agrochemical lead compounds. Many polyketides are biosynthesized by large multifunctional megaenzymes termed type I modular polyketide synthases (PKSs). These systems possess a distinctive assembly line-like architecture, comprising a series of linearly arranged, multidomain extension modules, housed in sequence within giant polypeptide chains.
View Article and Find Full Text PDFSpirotetronate and spirotetramate natural products include a multitude of compounds with potent antimicrobial and antitumor activities. Their biosynthesis incorporates many unusual biocatalytic steps, including regio- and stereo-specific modifications, cyclizations promoted by Diels-Alderases, and acetylation-elimination reactions. Here we focus on the acetate elimination catalyzed by AbyA5, implicated in the formation of the key Diels-Alder substrate to give the spirocyclic system of the antibiotic abyssomicin C.
View Article and Find Full Text PDFThe Diels-Alder reaction, a [4 + 2] cycloaddition of a conjugated diene to a dienophile, is one of the most powerful reactions in synthetic chemistry. Biocatalysts capable of unlocking new and efficient Diels-Alder reactions would have major impact. Here we present a molecular-level description of the reaction mechanism of the spirotetronate cyclase AbyU, an enzyme shown here to be a bona fide natural Diels-Alderase.
View Article and Find Full Text PDFBroad-spectrum antimicrobials kill indiscriminately, a property that can lead to negative clinical consequences and an increase in the incidence of resistance. Species-specific antimicrobials that could selectively kill pathogenic bacteria without targeting other species in the microbiome could limit these problems. The pathogen genome presents an excellent target for the development of such antimicrobials.
View Article and Find Full Text PDFWe demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.
View Article and Find Full Text PDFSediment samples collected off the coast of San Diego were analyzed for actinomycete diversity using culture-independent techniques. Eight new operational taxonomic units (OTUs) in the Streptomycetaceae were identified as well as new diversity within previously cultured marine OTUs. Sequences belonging to the marine actinomycete genus Salinispora were also detected, despite the fact that this genus has only been reported from more tropical environments.
View Article and Find Full Text PDFA novel filamentous actinobacterial organism, designated strain MG-37(T), was isolated from a Norwegian fjord sediment and examined using a polyphasic taxonomic approach. The organism was determined to have chemotaxonomic and morphological properties consistent with its classification in the genus Verrucosispora and formed a distinct phyletic line in the Verrucosispora 16S rRNA gene tree. It was most closely related to Verrucosispora maris DSM 45365(T) (99.
View Article and Find Full Text PDFVerrucosispora isolate AB-18-032(T), the abyssomicin- and proximicin-producing actinomycete, has chemotaxonomic and morphological properties consistent with its classification in the genus Verrucosispora. The organism formed a distinct phyletic line in the Verrucosispora 16S rRNA gene tree sharing similarities of 99.7%, 98.
View Article and Find Full Text PDFFront Microbiol
November 2011
The increasing incidence and prevalence of antibiotic resistance in bacteria threatens the "antibiotic miracle." Conventional antimicrobial drug development has failed to replace the armamentarium needed to combat this problem, and novel solutions are urgently required. Here we review both natural and synthetic RNA silencing and its potential to provide new antibacterials through improved target selection, evaluation, and screening.
View Article and Find Full Text PDFVerrucosispora maris AB-18-032 is a marine actinomycete that produces atrop-abyssomicin C and proximicin A, both of which have novel structures and modes of action. In order to understand the biosynthesis of these compounds, to identify further biosynthetic potential, and to facilitate rational improvement of secondary metabolite titers, we have sequenced the complete 6.7-Mb genome of Verrucosispora maris AB-18-032.
View Article and Find Full Text PDFForty strains isolated from soil taken from a hay meadow were assigned to the genus Dactylosporangium on the basis of colonial properties. 16S rRNA gene sequence analysis showed that the isolates formed a group that was most closely related to the type strain of Dactylosporangium aurantiacum, but well separated from other Dactylosporangium type strains and from 'Dactylosporangium salmoneum' NRRL B-16294. Twelve of 13 representative isolates had identical 16S rRNA gene sequences and formed a subclade that was distinct from corresponding phyletic lines composed of the remaining isolate, strain BK63T, the 'D.
View Article and Find Full Text PDFLarge numbers of alkaliphilic streptomycetes isolated from a beach and dune sand system were dereplicated manually based on aerial spore mass, colony reverse and diffusible pigment colours formed on oatmeal agar, and on their capacity to produce melanin pigments on peptone-yeast extract-iron agar. The resultant data were converted to their respective red, blue and green shade intensities. The Euclidean distances between each of the colours were calculated by considering red, green and blue shade intensity values as X, Y and Z coordinates in three dimensional space.
View Article and Find Full Text PDF