Publications by authors named "James E Lucas"

Protein binding to small molecules is fundamental to many biological processes, yet it remains challenging to predictively design this functionality de novo. Current state-of-the-art computational design methods typically rely on existing small molecule binding sites or protein scaffolds with existing shape complementarity for a target ligand. Here we introduce new methods that utilize pools of discrete contacts between protein side chains and defined small molecule ligand substructures (ligand fragments) observed in the Protein Data Bank.

View Article and Find Full Text PDF

The CRISPR-Cas9 system provides the ability to edit, repress, activate, or mark any gene (or DNA element) by pairing of a programmable single guide RNA (sgRNA) with a complementary sequence on the DNA target. Here we present a new method for small-molecule control of CRISPR-Cas9 function through insertion of RNA aptamers into the sgRNA. We show that CRISPR-Cas9-based gene repression (CRISPRi) can be either activated or deactivated in a dose-dependent fashion over a >10-fold dynamic range in response to two different small-molecule ligands.

View Article and Find Full Text PDF

Computationally modeling changes in binding free energies upon mutation (interface ΔΔ G) allows large-scale prediction and perturbation of protein-protein interactions. Additionally, methods that consider and sample relevant conformational plasticity should be able to achieve higher prediction accuracy over methods that do not. To test this hypothesis, we developed a method within the Rosetta macromolecular modeling suite (flex ddG) that samples conformational diversity using "backrub" to generate an ensemble of models and then applies torsion minimization, side chain repacking, and averaging across this ensemble to estimate interface ΔΔ G values.

View Article and Find Full Text PDF

Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry.

View Article and Find Full Text PDF