Anion-exchange-membrane water electrolyzers (AEMWEs) in principle operate without soluble electrolyte using earth-abundant catalysts and cell materials and thus lower the cost of green H . Current systems lack competitive performance and the durability needed for commercialization. One critical issue is a poor understanding of catalyst-specific degradation processes in the electrolyzer.
View Article and Find Full Text PDFAmong existing water electrolysis (WE) technologies, anion-exchange-membrane water electrolyzers (AEMWEs) show promise for low-cost operation enabled by the basic solid-polymer electrolyte used to conduct hydroxide ions. The basic environment within the electrolyzer, in principle, allows the use of non-platinum-group metal catalysts and less-expensive cell components compared to acidic-membrane systems. Nevertheless, AEMWEs are still underdeveloped, and the degradation and failure modes are not well understood.
View Article and Find Full Text PDFCerium oxide nanocrystals have size- and shape-dependent properties that are potentially useful in a variety of applications if these structural attributes can be controlled through synthesis. Various syntheses have been developed in attempts to access different sizes and shapes, but little is known about selecting reaction conditions to predictably control the growth, and therefore properties, of the nanocrystals. Here, we investigate the role of cerium precursor oxidation states, reaction atmospheres, and acetic acid ligation on the size and shape of cerium oxide nanocrystals.
View Article and Find Full Text PDFSunscreen safety and efficacy is generally evaluated based upon the properties of the individual chemicals in a formulation. However, the photostability of sunscreens has been shown to be highly dependent on the mixture of chemicals present. To better understand how sunscreen formulation influences stability, and to establish a foundation for probing the influence of zinc oxide additives, we formulated five different small-molecule based ultraviolet-filter (UV-filter) mixtures with a Sun Protection Factor (SPF) of 15.
View Article and Find Full Text PDFIron oxide nanocrystals have the potential for use in a wide variety of applications if we can finely control and tune the diverse structural attributes that lead to specific, desired properties. At the high temperatures utilized for thermal decomposition based syntheses, commonly used Fe(III) alkylcarboxylate precursors are inadvertently reduced and produce wüstite (FeO), which is paramagnetic, as opposed to the desired ferrimagnetic spinel phases of magnetite (FeO) and maghemite (γ-FeO). To circumvent this issue, we carried out syntheses at lower temperatures (∼230 °C) using an esterification-mediated approach.
View Article and Find Full Text PDFSpinel iron oxide nanocrystals (NCs) have been reported to have atomic-level core and surface structural features that differ from those of the bulk material. Recent advances in a continuous growth synthesis of metal oxide NCs make it possible to prepare a series of NCs with subnanometer control of size with diameters below 10 nm that are well-suited for investigating size-dependent structure and reactivity. Here, we study the evolution of size-dependent structure in spinel iron oxide and determine how nanoscale structure influences the growth of NCs.
View Article and Find Full Text PDFPredictive models for the impact of nanomaterials on biological systems remain elusive. Although there is agreement that physicochemical properties (particle diameter, shape, surface chemistry, and core material) influence toxicity, there are limited and often contradictory, data relating structure to toxicity, even for core diameter. Given the importance of size in determining nanoscale properties, we aimed to address this data gap by examining the biological effects of a defined series of gold nanoparticles (AuNPs) on zebrafish embryos.
View Article and Find Full Text PDFNanoparticle safety is usually determined using solutions of individual particles that are free of additives. However, the size-dependent properties of nanoparticles can be readily altered through interactions with other components in a mixture. In applications, nanoparticles are commonly combined with surfactants or other additives to increase dispersion or to enhance product performance.
View Article and Find Full Text PDFDoped metal oxide nanocrystals that exhibit tunable localized surface plasmon resonances (LSPRs) represent an intriguing class of nanomaterials that show promise for a variety of applications from spectroscopy to sensing. LSPRs arise in these materials through the introduction of aliovalent dopants and lattice oxygen vacancies. Tuning the LSPR shape and energy is generally accomplished through controlling the concentration or identity of dopants in a nanocrystal, but the lack of finer synthetic control leaves several fundamental questions unanswered regarding the effects of radial dopant placement, size, and nanocrystalline architecture on the LSPR energy and damping.
View Article and Find Full Text PDFNanoparticles possessing functional groups that can be readily conjugated (e.g., through click chemistry) are important precursors for the preparation of customized nanohybrid products.
View Article and Find Full Text PDFMultimeric oxo-hydroxo Al clusters function as models for common mineral structures and reactions. Cluster research, however, is often slowed by a lack of methods to prepare clusters in pure form and in large amounts. Herein, we report a facile synthesis of the little known cluster Al (OH) (H O) (SO ) (Al ) through a simple dissolution method.
View Article and Find Full Text PDFDNA-functionalized gold nanoparticles have been increasingly applied as sensitive and selective analytical probes and biosensors. The DNA ligands bound to a nanoparticle dictate its reactivity, making it essential to know the type and number of DNA strands bound to the nanoparticle surface. Existing methods used to determine the number of DNA strands per gold nanoparticle (AuNP) require that the sequences be fluorophore-labeled, which may affect the DNA surface coverage and reactivity of the nanoparticle and/or require specialized equipment and other fluorophore-containing reagents.
View Article and Find Full Text PDFFor the smallest nanostructures (<5 nm), small changes in structure can lead to significant changes in properties and reactivity. In the case of nanoparticle (NP)-functionalized electrodes, NP structure and composition, and the nature of the NP-electrode interface have a strong influence upon electrochemical properties that are critical in applications such as amperometric sensing, photocatalysis and electrocatalysis. Existing methods to fabricate NP-functionalized electrodes do not allow for precise control over all these variables, especially the NP-electrode interface, making it difficult to understand and predict how structural changes influence NP activity.
View Article and Find Full Text PDFThe ability to precisely control the composition of nanocrystals, similar to the way organic chemists control the structure of small molecules, remains an important challenge in nanoscience. Rather than dictating nanocrystal size through the nucleation event, growth of nanocrystals through continuous precursor addition would allow fine structural control. Herein, we present a method of growth for indium oxide nanocrystals that relies on the slow addition of an indium carboxylate precursor into hot oleyl alcohol.
View Article and Find Full Text PDFFor textiles containing nanosilver, we assessed benefit (antimicrobial efficacy) in parallel with potential to release nanosilver (impact) during multiple life cycle stages. The silver loading and method of silver attachment to the textile highly influenced the silver release during washing. Multiple sequential simulated household washing experiments for fabric swatches in deionized water with or without detergent showed a range of silver release.
View Article and Find Full Text PDFThe interactions of nanoparticles with biomolecules, surfaces, or other nanostructures are dictated by the nanoparticle's surface chemistry. Thus, far, shortcomings of syntheses of nanoparticles with defined ligand shell architectures have limited our ability to understand how changes in their surface composition influence reactivity and assembly. We report new synthetic approaches to systematically control the number (polyvalency), length, and steric interactions of omega-functionalized (targeting) ligands within an otherwise passivating (diluent) ligand shell.
View Article and Find Full Text PDFA convenient, single-step synthesis is reported that produces ligand-stabilized, water-soluble gold nanoparticles (AuNPs) with subnanometer-level precision of the mean core diameter over a range of 2-9 nm for a series of desired surface chemistries. The synthesis involves the reduction of a Au(III) species with sodium borohydride in the presence of a functionalized alkyl thiosulfate (Bunte salt) to yield thiolate-protected AuNPs. A key advantage of this synthesis is that simply adjusting the pH of the gold salt solution leads to control over the AuNP core size.
View Article and Find Full Text PDFThe Twelve Principles of Green Chemistry were first published in 1998 and provide a framework that has been adopted not only by chemists, but also by design practitioners and decision-makers (e.g., materials scientists and regulators).
View Article and Find Full Text PDFSize-dependent properties of surface-confined inorganic nanostructures are of interest for applications ranging from sensing to catalysis and energy production. Ligand-stabilized nanoparticles are attractive precursors for producing such nanostructures because the stabilizing ligands may be used to direct assembly of thoroughly characterized nanoparticles on the surface. Upon assembly; however, the ligands block the active surface of the nanoparticle.
View Article and Find Full Text PDFLigand exchange is frequently used to introduce new functional groups on the surface of inorganic nanoparticles or clusters while preserving the core size. For one of the smallest clusters, triphenylphosphine (TPP)-stabilized undecagold, there are conflicting reports in the literature regarding whether core size is retained or significant growth occurs during exchange with thiol ligands. During an investigation of these differences in reactivity, two distinct forms of undecagold were isolated.
View Article and Find Full Text PDFThe quantity of information on nanomaterial properties and behavior continues to grow rapidly. Without a concerted effort to collect, organize and mine disparate information coming out of current research efforts, the value and effective use of this information will be limited at best. Data will not be translated to knowledge.
View Article and Find Full Text PDFThe properties of metal oxide nanocrystals can be tuned by incorporating mixtures of matrix metal elements, adding metal ion dopants, or constructing core/shell structures. However, high-temperature conditions required to synthesize these nanocrystals make it difficult to achieve the desired compositions, doping levels, and structural control. We present a lower temperature synthesis of ligand-stabilized metal oxide nanocrystals that produces crystalline, monodisperse nanocrystals at temperatures well below the thermal decomposition point of the precursors.
View Article and Find Full Text PDFThe challenge of defining a length on the nanoscale is non-trivial. For a well-defined inorganic nanoscale species, a size measurement can describe a number of different dimensions (core, shell, solvation sphere). Often size is reported out of context or even inadvertently misrepresented.
View Article and Find Full Text PDFSystematic toxicological study is still required to fully understand the hazard potentials of gold nanoparticles (AuNPs). Because their biomedical applications are rapidly evolving, we investigated developmental toxicity of AuNPs in an in vivo embryonic zebrafish model at exposure concentration ranges from 0.08 to 50mg/l.
View Article and Find Full Text PDFPositively charged gold nanoparticles (0.8-nm core diameter) reduced yeast survival, but not growth, at a concentration of 10 to 100 μg/ml. Among 17 resistant deletion mutants isolated in a genome-wide screen, highly significant enrichment was observed for respiration-deficient mutants lacking genes encoding proteins associated with the mitochondrion.
View Article and Find Full Text PDF