Publications by authors named "James E Gawel"

Lake sediments store metal contaminants from historic pesticide and herbicide use and mining operations. Historical regional smelter operations in the Puget Sound lowlands have resulted in arsenic concentrations exceeding 200 μg As g-1 in urban lake sediments. Prior research has elucidated how sediment oxygen demand, warmer sediment temperatures, and alternating stratification and convective mixing in shallow lakes results in higher concentrations of arsenic in aquatic organisms when compared to deeper, seasonally stratified lakes with similar levels of arsenic pollution in profundal sediments.

View Article and Find Full Text PDF

Arsenic (As) causes cancer and non-cancer health effects in humans. Previous research revealed As concentrations over 200 μg g in lake sediments in the south-central Puget Sound region affected by the former ASARCO copper smelter in Ruston, WA, and significant bioaccumulation of As in plankton in shallow lakes. Enhanced uptake occurs during summertime stratification and near-bottom anoxia when As is mobilized from sediments.

View Article and Find Full Text PDF

The American Smelting and Refining Company (ASARCO) smelter in Ruston, Washington, contaminated the south-central Puget Sound region with heavy metals, including arsenic and lead. Arsenic and lead distribution in surface sediments of 26 lakes is significantly correlated with atmospheric model predictions of contaminant deposition spatially, with concentrations reaching 208 mg/kg As and 1,375 mg/kg Pb. The temporal distribution of these metals in sediment cores is consistent with the years of operation of the ASARCO smelter.

View Article and Find Full Text PDF

To assess physiological impacts of biosolids on trees, metal contaminants and phytochelatins were measured in Douglas-fir stands amended with biosolids in 1982. A subsequent greenhouse study compared these same soils to soils amended with fresh wastewater treatment plant biosolids. Biosolids-amended field soils had significantly higher organic matter, lower pH, and elevated metals even after 25 years.

View Article and Find Full Text PDF

The long-term fate of a 30-year-old pulse arsenic input to a eutrophic lake was studied to determine if As has become effectively trapped in sediments or remains in active exchange with the water column. Legacy As was readily mobilized from sediments of Spy Pond (Arlington, MA), a eutrophic kettle-hole lake that was treated with 1000s kg As in the 1960s to manage excessive aquatic macrophyte growth. Arsenic was mobilized from hypolimnetic sediments during bottom-water anoxia in spring, summer, and fall, and As accumulated to maximum concentrations of 2100 nM.

View Article and Find Full Text PDF

Characterizing the spatial extent of groundwater metal contamination traditionally requires installing sampling wells, an expensive and time-consuming process in urban areas. Moreover, extrapolating biotic effects from metal concentrations alone is problematic, making ecological risk assessment difficult. Our study is the first to examine the use of phytochelatin measurements in tree leaves for delimiting biological metal stress in shallow, metal-contaminated groundwater systems.

View Article and Find Full Text PDF