Publications by authors named "James E Garrett"

An excitatory peptide, di16a, with 49 amino acids and 10 cysteine residues was purified and characterized from the venom of Conus distans. Five AA residues were modified: one gamma-carboxyglutamate (Gla), and four hydroxyproline (Hyp) residues. A cDNA clone encoding the precursor for the peptide was characterized; the peptide has a novel cysteine framework and a distinctive signal sequence that differs from any other conotoxin superfamily.

View Article and Find Full Text PDF

Conkunitzin-S1 from the cone snail Conus striatus is the first member of a new neurotoxin family with a canonical Kunitz domain fold. Conk-S1 is 60 amino acids long and lacks one of the three conserved disulfide bonds typically found in Kunitz domain modules. It binds specifically to voltage activated potassium channels of the Shaker family.

View Article and Find Full Text PDF

mu-Conotoxins are peptides that block sodium channels. Molecular cloning was used to identify four novel mu-conotoxins: CnIIIA, CnIIIB, CIIIA, and MIIIA from Conus consors, C. catus and C.

View Article and Find Full Text PDF

Most of the >50,000 different pharmacologically active peptides in Conus venoms belong to a small number of gene superfamilies. In this work, the M-conotoxin superfamily is defined using both biochemical and molecular criteria. Novel excitatory peptides purified from the venoms of the molluscivorous species Conus textile and Conus marmoreus all have a characteristic pattern of Cys residues previously found in the mu-, kappaM-, and psi-conotoxins (CC-C-C-CC).

View Article and Find Full Text PDF

The peptides isolated from venoms of predatory marine Conus snails ("conotoxins") are well-known to be highly potent and selective pharmacological agents for voltage-gated ion channels and receptors. We report the discovery of two novel TTX-resistant sodium channel blockers, mu-conotoxins SIIIA and KIIIA, from two species of cone snails. The two toxins were identified and characterized by combining molecular techniques and chemical synthesis.

View Article and Find Full Text PDF

Conkunitzin-S1 (Conk-S1) is a 60-residue neurotoxin from the venom of the cone snail Conus striatus that interacts with voltage-gated potassium channels. Conk-S1 shares sequence homology with Kunitz-type proteins but contains only two out of the three highly conserved cysteine bridges, which are typically found in these small, basic protein modules. In this study the three-dimensional structure of Conk-S1 has been solved by multidimensional NMR spectroscopy.

View Article and Find Full Text PDF

Each Conus snail species produces 50-200 unique peptide-based conotoxins, derived from a number of different gene superfamilies. Conotoxins are synthesized and secreted in a long venom duct, but biochemical and molecular aspects of their biosynthesis remain poorly understood. Here, we analyzed expression patterns of conotoxin genes belonging to different superfamilies in Conus textile venom ducts.

View Article and Find Full Text PDF

Neuronal nicotinic acetylcholine receptors (nAChRs) both mediate direct cholinergic synaptic transmission and modulate synaptic transmission by other neurotransmitters. Novel ligands are needed as probes to discriminate among structurally related nAChR subtypes. Alpha-conotoxin MII, a selective ligand that discriminates among a variety of nAChR subtypes, fails to discriminate well between some subtypes containing the closely related alpha3 and alpha6 subunits.

View Article and Find Full Text PDF

The 500 different species of venomous cone snails (genus Conus) use small, highly structured peptides (conotoxins) for interacting with prey, predators, and competitors. These peptides are produced by translating mRNA from many genes belonging to only a few gene superfamilies. Each translation product is processed to yield a great diversity of different mature toxin peptides (approximately 50,000-100,000), most of which are 12-30 aa in length with two to three disulfide crosslinks.

View Article and Find Full Text PDF

Until now, there have been no antagonists to discriminate between heteromeric nicotinic acetylcholine receptors (nAChRs) containing the very closely related alpha6 and alpha3 subunits. nAChRs containing alpha3, alpha4, or alpha6 subunits in combination with beta2, occasionally beta4, and sometimes beta3 or alpha5 subunits, are thought to play important roles in cognitive function, pain perception, and the reinforcing properties of nicotine. We cloned a novel gene from the predatory marine snail Conus purpurascens.

View Article and Find Full Text PDF

Mu-conotoxins are a family of peptides from the venoms of predatory cone snails. Previously characterized mu-conotoxins preferentially block skeletal muscle voltage-gated sodium channels. We report here the discovery (via cloning), synthesis, and electrophysiological characterization of a new peptide in this family, mu-conotoxin SmIIIA from Conus stercusmuscarum.

View Article and Find Full Text PDF

Many venomous organisms produce toxins that disrupt neuromuscular communication to paralyze their prey. One common class of such toxins comprises nicotinic acetylcholine receptor antagonists (nAChRs). Thus, most toxins that act on nAChRs are targeted to the neuromuscular subtype.

View Article and Find Full Text PDF

The posttranslational gamma-carboxylation of glutamate residues in secreted proteins to gamma-carboxyglutamate is carried out by the vitamin K-dependent enzyme gamma-glutamyl carboxylase. gamma-Carboxylation has long been thought to be a biochemical specialization of vertebrates, essential for blood clotting. Recently, a gamma-carboxylase was shown to be expressed in Drosophila, although its function remains undefined in this organism.

View Article and Find Full Text PDF